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Improved analytical chip thickness model for milling
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bstract

In this paper an analytic expression for chip thickness in milling was formulated while considering the cycloidal motion of the teeth, runout,
nd uneven teeth spacing. In order to generalize the equation, the cutting parameters associated with milling (linear feed, tool rotational speed,
nd radius) were combined into a single, non-dimensional parameter. The new parameter allowed abstraction of the milling process and enabled
election of the maximum possible chip thickness in milling. Equations for entry and exit angles of a cut were also developed. The chip thickness
alues given by the new model were compared to prior models and showed lower error levels.

2007 Elsevier Inc. All rights reserved.
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. Introduction

Discrete part production by macro- and micro-milling remains an important manufacturing capability. To improve process
fficiency and part quality, research efforts continue with a focus on pre-process performance predictions. Important aspects of
illing models include developing an accurate description of the system dynamics and cutting forces; see [1] for an overview. The

utting forces are generally taken to be a function of the time varying chip thickness. Therefore, a number of authors have studied
hip thickness in milling and reported various models [2–11].

In this work, we build on these previous studies to develop an analytical chip thickness model that incorporates the cycloidal
rajectories of the cutter teeth, radial runout of individual teeth, and uneven teeth spacing. Expressions for entry and exit angles and
imiting combinations of feed rate, spindle speed, and tool radius for chip formation are also provided. It is shown that: (1) the new

odel is more accurate than the well-known circular tooth path approximation and the analytical model presented in Ref. [12]; and
2) the accuracy does not degrade in the presence of runout. The reader may note that this is a geometric model only and does not
ncorporate such effects as minimum chip thickness and material elastic recovery observed in micro-milling [13].

. Non-dimensional tool path

The path of the ith tooth in a milling cut can be described parametrically as

xi = ρθ + ri sin(θ + φi), yi = ri cos(θ + φi), (1)
here ρ = f/ω = Ntft/2π is the radius of the circle that defines the cycloidal motion of the tooth, f the linear feed rate, ω the rotational
peed of the tool, Nt the number of teeth on the tool, ft the feed per tooth, ri the radius of the ith tooth including runout, θ the
nstantaneous cutter angle, and φi is the angle between θ and the ith tooth. Fig. 1 shows a schematic of the tool path and tool. Eq.
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ig. 1. (a) Path for a tooth of radius ri attached to a circle of radius ρ which rolls along an imaginary surface. (b) A schematic of the milling tool. Teeth can be
nevenly spaced and each tooth can have a different radius. The reference, θ, is common for all teeth; the difference in angular position for each tooth is the angle φi

hich is measured from the reference.

1) can be rewritten in non-dimensional form by dividing by the nominal tool radius, r, yielding:

Xi = xi

r
= εθ + αi sin(θ + φi), Yi = yi

r
= αi cos(θ + φi), (2)

here ε = ρ/r is the non-dimensional cutting parameter, αi = 1 + ei the non-dimensional tool radius of the ith tooth which is nominally
but varies by ei, and ei is the runout of the ith tooth normalized with the nominal radius r. For no runout the non-dimensional path of
ny tooth is defined solely by ε. The non-dimensional parameter, ε, is proportional to the linear feed rate and inversely proportional
o the rotational speed of the tool and the tool radius. As ε increases the tool path becomes more elongated and the chip thickness
ncreases. Tool path plots for a two-tooth cutter with various ε values are provided in Fig. 2.

. Limit of chip formation

The chip thickness in milling is defined as the distance between the current tooth’s path and the previous tooth’s path along the
ine segment connecting the tool center to the current tooth’s cutting edge. Fig. 2c shows that for the given orientation the chip
hickness definition is violated since the chip thickness is not defined between the current and previous paths and extends beyond the
ool center. If the definition for chip thickness is to be satisfied, ε must be decreased so that the current tooth intersects the previous
ooth’s path as shown in Fig. 2b. The limit of chip formation is then given by the value εlim which forces all orientations of the
urrent tooth between chip entry and exit to adhere to the definition for chip thickness. Though the orientations shown in Fig. 2 seem
rbitrarily chosen, simulations show that this is the first orientation to violate the chip thickness definition as ε increases.

As a first approximation of the case shown in Fig. 2b, assume that the point of intersection, B, occurs on the line Y = 0. Then at
ome point in time, t0, the leading tooth, i + 1, rotates onto Yi+1 = 0 at the angle θt0 + φi+1 = π/2 and later in time, t1, the cutting

ooth, i, rotates onto Yi = −αi at the angle θt1 + φi = π. For εlim these two locations share the same x-coordinate:

Xi(θt1 ) = Xi+1(θt0 ), εθt1 + αi sin(θt1 + φi) = εθt0 + αi+1 sin(θt0 + φi+1),

ε(π − φi) + αi sin(π) = ε
(π

2
− φi+1

)
+ αi+1 sin

(π

2

)
, ε

(π

2
+ φi+1 − φi

)
= αi+1, εlim= αi+1

(π/2) + φi+1 − φi

. (3)
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Fig. 2. Plots of the non-dimensional tool path with increasing ε values. Point A is the tip of the current tooth, i, B is the instantaneous intersection with the previous
t
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ooth’s path, i + 1, and C is the tool center. The instantaneous chip thickness of the current tooth is the line segment AB. The outline of the chip being formed is
ighlighted using bold lines with (a) and (b) marking the tooth entrance and exit angles, respectively.

s shown by Eq. (3), the limiting ε value is a function of the angle difference between teeth and it increases for smaller teeth spacing.
venly spaced teeth have the same angle difference between all teeth, φi+1 − φi = 2π/Nt, but for unevenly spaced teeth the largest
ifference between any two consecutive teeth should be used for determining εlim. In addition, εlim is influenced by runout, therefore,
he smallest tooth’s non-dimensional radius should be used for the value of αi+1 when applying Eq. (3). Finally, if εlim is rewritten
n familiar terms, Ntft/2πr, and evenly spaced teeth are assumed, then (ft/r)lim = 2παi+1/(Nt(π/2 + φi+1 − φi)) = αi+1/(Nt/4 + 1). It is
mportant to note that even when written this way, (ft/r)lim is still dependent on the number of teeth even though the quantity, ft/r, is
ndependent of the number of teeth.

In reality the true point of intersection, B, occurs when the tooth, i + 1, has an x-direction velocity of zero:

d(Xi+1)

dθ
= ε + αi+1 cos(θt0 + φi+1) = 0, θt0 + φi+1 = arccos

(
− ε

αi+1

)
.

The next tooth, i, still rotates to θt1 + φi = π and the x-coordinate of these two points are coincident:

Xi(θt+1) = Xi+1(θt), εθt+1 + αi sin(θt+1 + φi) = εθt + αi+1 sin(θt + φi+1),

ε(π − φi) + αi sin(π) = ε

[
arccos

(
− ε

αi+1

)
− φi+1

]
+ αi+1 sin

[
arccos

(
− ε

αi+1

)]
,

ε

[
π − arccos

(
− ε

αi+1

)
+ φi+1 − φi

]
=αi+1 sin

[
arccos

(
− ε

αi+1

)]
, εlim= αi+1 sin[arccos(−ε/αi+1)]

[π − arccos(−ε/αi+1) + φi+1 − φi]
. (4)

q. (4) must be solved numerically for a given angle difference. A plot of Eqs. (3) and (4) versus angle difference, φi+1 − φi, and
he error between them, Δer, is provided in Fig. 3. The value of εlim is given for the angle difference corresponding to 2–5 tooth
utters with evenly spaced teeth. Most milling cuts have values of ε that are far below the limiting value, so εlim represents extremely
ggressive cutting.

. Analytical chip thickness
The uncut chip thickness of the current tooth is the distance between the current and previous tooth paths along the line segment
onnecting the tool center to the current tooth’s cutting edge which is marked as AB in Fig. 2. The non-dimensional chip thickness
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ig. 3. Limiting value of ε to retain normal chip formation given the angle difference between successive teeth. Smaller angle differences enable more aggressive
utting.

s then

(5)

here |AC| and |BC| are the distances between points A and C, and B and C, respectively, in Fig. 2, and XC and YC are the coordinates
f the tool center (YC = 0 always in the absence of tool vibrations which are not modeled here). As shown in [12], but rewritten in
on-dimensional form, the relationship between θt0 and θt1 is

(θt1 − θt0 )ε cos(θt1 + φi) + αi+1 sin[(θt1 + φi) − (θt0 + φi+1)] = 0. (6)

In order to make Eq. (5) a function of the current cutting tooth’s angle, θt1 , θt0 must be determined numerically from Eq. (6) [12].
owever, the sinusoidal term in Eq. (6) contains the difference between the angle of the current cutting tooth, θt1 + φi, and leading

ooth, θt0 + φi+1. Even for large ε values this difference is small, enabling a linear small angle approximation of the sinusoidal term
sin θ = θ):

(θt1 − θt0 )ε cos(θt1 + φi) + αi+1 sin(θt1 + φi − θt0 − φi+1)=0, (θt1 − θt0 )ε cos(θt1 + φi) + αi+1(θt1 + φi − θt0 − φi+1)=0,

θt0 (ε cos(θt1 + φi) + αi+1) = θt1ε cos(θt1 + φi) + αi+1(θt1 + φi − φi+1), θt0=
θt1ε cos(θt1 + φi) + αi+1(θt1 + φi − φi+1)

ε cos(θt1 + φi) + αi+1
,

θt0 = θt1 (ε cos(θt1 + φi) + αi+1) + αi+1(φi − φi+1)

ε cos(θt1 + φi) + αi+1
, θt0 = θt1 − φi+1 − φi

(ε/αi+1) cos(θt1 + φi) + 1
. (7)

Substituting Eq. (7) into Eq. (5) yields the non-dimensional chip thickness for the milling operation expressed as a function of
he non-dimensional parameter, ε, and the non-dimensional tool radius, α, in terms of the current cutting tooth angle, θt1 .

. Entry and exit angles

The entry and exit angles for slotting (i.e., radial depth equal to the tool diameter) can be determined by setting Eq. (5) equal to
ero:

H = α −
√

ε2(θ − θ )2 + 2εα (θ − θ ) sin(θ + φ ) + α2 = 0,
i i t0 t1 i+1 t0 t1 t0 i+1 i+1

ε2(θt0 − θt1 )2 + 2εαi+1(θt0 − θt1 ) sin(θt0 + φi+1) + α2
i+1 = α2

i ,

2εαi+1(θt0 − θt1 ) sin(θt0 + φi+1) = α2
i − α2

i+1 − ε2(θt0 − θt1 )2, θt0 + φi+1 = arcsin

[
α2

i − α2
i+1 − ε2(θt0 − θt1 )2

2εαi+1(θt0 − θt1 )

]
. (8)
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Since the entry and exit angles occur near θ + φ = 0 and θ + φ = π, respectively, Eq. (7) can be approximated as (θt0 − θt1 )entry =
φi − φi+1)/[(ε/αi+1) cos(0) + 1] for the entry angle and (θt0 − θt1 )exit = (φi − φi+1)/[(ε/αi+1) cos(π) + 1] for the exit angle. These
esults can then be substituted into Eq. (8):

(θt0 + φi+1)entry = arcsin

[
α2

i − α2
i+1 − ε2[(φi − φi+1)/(ε/αi+1 + 1)]2

2εαi+1[(φi − φi+1)/(ε/αi+1 + 1)]

]

= arcsin

[
ε(−φi + φi+1)

2αi+1((ε/αi+1) + 1)
+ (−α2

i + α2
i+1)((ε/αi+1) + 1)

2εαi+1(−φi + φi+1)

]

= arcsin

[
1

2

φi+1 − φi

(αi+1/ε) + 1
+ 1 − (α2

i /α
2
i+1)

2

(αi+1/ε) + 1

φi+1 − φi

]
, (9a)

(θt0 + φi+1)exit = arcsin

[
1

2

φi+1 − φi

(αi+1/ε) − 1
+ 1 − (α2

i /α
2
i+1)

2

(αi+1/ε) − 1

φi+1 − φi

]
, (9b)

ince the arcsine function in Eqs. (9a) and (9b) is multivalued, the expressions are not specific to any single chip being formed.
owever, if we consider the first chip to form, which has entry and exit angles near (θt0 + φi+1)entry = 0 and (θt0 + φi+1)exit = π,
qs. (9a) and (9b) can be written using the principal inverse sine function:

(θt0 + φi+1)entry = sin−1

[
1

2

φi+1 − φi

(αi+1/ε) + 1
+ 1 − (α2

i /α
2
i+1)

2

(αi+1/ε) + 1

φi+1 − φi

]
, (10a)

(θt0 + φi+1)exit = π − sin−1

[
1

2

φi+1 − φi

(αi+1/ε) − 1
+ 1 − (α2

i /α
2
i+1)

2

(αi+1/ε) − 1

φi+1 − φi

]
. (10b)

Eqs. (10a) and (10b) capture entry angles that fall between [−π/2, π/2] and exit angles that fall between [π/2, 3π/2], but they
nly define the angular position of the leading tooth, i + 1. If used together with Eq. (2), they can generate the angular position of
he current cutting tooth, i, by setting the y-equations for the different teeth equal to each other and solving for θt1 + φi:

Yi(θt1 ) = Yi+1(θt0 ) ⇒ αi cos(θt1 + φi) = αi+1 cos(θt0 + φi+1), θt1 + φi = arccos

[
αi+1

αi

cos(θt0 + φi+1)

]
. (11)

Similar to before, the arccosine function in Eq. (11) is multivalued. The difference is that the principal inverse cosine function
as an interval between [0, π] and, depending on the system parameters, the entry and exit angles for tooth i can fall both inside and
utside the interval. This means that Eq. (11) can assume four different forms when considering values near (θt1 + φi)entry = 0 and
θt1 + φi)exit = π:

(θt1 + φi)entry = −cos−1
{

αi+1

αi

cos[(θt0 + φi+1)entry]

}
, (12a)

(θt1 + φi)exit = 2π − cos−1
{

αi+1

αi

cos[(θt0 + φi+1)exit]

}
, (12b)

(θt1 + φi)entry = cos−1
{

αi+1

αi

cos[(θt0 + φi+1)entry]

}
, (12c)
(θt1 + φi)exit = cos−1
{

αi+1

αi

cos[(θt0 + φi+1)exit]

}
. (12d)

qs. (12a) and (12b) describe entry angles in the interval [−π, 0] and exit angles in the interval [π, 2π], while Eqs. (12c) and (12d)
escribe entry and exit angles in the interval [0, π]. Typically, Eqs. (12c) and (12d) are used when (αi+1/αi) > 1; however, all system
arameters are important. In general, since the entry/exit angles come about from an intersection between the leading tooth, i + 1,
nd the current tooth, i, both sets of equations can be evaluated and the correct set determined by checking to see which generates
n intersecting point using Eq. (2).
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Table 1
Comparison between different feeds, spindle speeds, and diameters used to generate ε

Workpiece material Spindle speed (rpm) Feed (in./min) Diameter (in.) ε

Steel [14] 120,000 2.36 0.02 0.0003
Steel [12] 2,000 1.00 1/8 0.0013
Steel [12] 15,000 5.00 1/16 0.0017
Steel [14] 120,000 28.35 0.02 0.0038

Aluminum [12] 32,000 32.00 1/16 0.0051
Aluminum [12] 50,000 50.00 1/16 0.0051
Aluminum [12] 32,000 48.00 1/16 0.0076
Aluminum [12] 50,000 75.00 1/16 0.0076

Graphite [12] 15,000 30.00 1/16 0.0102
Graphite [12] 15,000 100.00 1/16 0.0340
G
G

T

6

T
t
p

E
n

.

v

F
c

raphite [12] 15,000 70.00 0.02 0.0743
raphite [12] 15,000 120.00 0.02 0.1273

he values were obtained from the references identified in the left column.

. Results

In order to test the accuracy of the chip thickness equation developed here, comparison was made to other commonly used methods.
he reference chip thickness was determined using the time domain simulation described in [8]; the reference was validated using

he numerical solution in [13], referred to as (HLXL) in the subsequent examples. The analytical methods tested were: the solution
rovided here (Linear), the circular tooth path approximation (Circular), and the solution developed in [12] (WBIT).

Each method for calculating chip thickness was adapted in order to use the non-dimensional parameters described previously.
xample ε values are listed in Table 1 to establish a baseline for comparison. The analytical chip thickness equations expressed in
on-dimensional form are

H = 2π
ε sin(θ + φ ) (circular), H = 2π

ε sin(θ + φ ) − 2π
ε2 sin(θ + φ ) cos(θ + φ ) + 2π2

ε2 cos2(θ + φ ) (WBIT)
i
Nt

i i
Nt

i
Nt

i i
Nt

2 i

A plot of the average error between each method and the reference for a two tooth slotting operation is provided in Fig. 4a. The
alue ε is varied from near zero to the limiting value for the selected case (εlim = 0.217). All analytical solutions deteriorate in their

ig. 4. (a) Average error with increasing values of ε for each solution as compared to the reference. (b) The error in the linear solution when runout is applied as
ompared to the reference with the same runout. In both cases, the HLXL solution shows ∼0% error which verifies the reference.
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Fig. 5. The positive error in chip thickness as a function of cutter angle for a two tooth tool in a slotting cut. The error is capped at 100% and also is set to 100% if
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he solution being considered predicts a value for chip thickness when the time domain solution does not (the denominator of the error equation is zero). In (a) the
inear solution has an error equal to the HLXL solution.

bility to predict average chip thickness as ε increases; however, the analytical solution described in this paper is more accurate than
he other analytical solutions for every value of ε. The graph in Fig. 4b shows that if runout is included in the linear solution, its
bility to predict chip thickness remains approximately the same. Fig. 5 shows the positive error in chip thickness between the time
omain and the analytical solutions as a function of cutter angle for various ε values, again for two tooth slotting. The positive error
as been capped at 100% to avoid distorting the graph when the value of the time domain simulation (the denominator of the error
quation) is near or equal to zero.

. Conclusions

In this paper an improved analytical model for chip thickness in milling was developed. First, the equations which describe tool
otion were non-dimensionalized yielding two parameters that define the cutting conditions in milling. Using these parameters,

he limit for chip formation was obtained. Then, the non-dimensional chip thickness was determined based on a small angle
pproximation of the sinusoidal term in the working equation. Finally, expressions for the entry and exit angles were provided. The
ethod from this paper was then compared, along with other methods, to a time domain simulation. In all comparisons the method

rom this paper more closely approximated the time domain simulation than the other analytical approaches.
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