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This review paper presents a comprehensive analysis of period-n (i.e., motion that
repeats every n tooth periods) bifurcations in milling. Although period-n bifurcations in
milling were only first reported experimentally in 1998, multiple researchers have since
used both simulation and experiment to study their unique behavior in milling. To com-
plement this work, the authors of this paper completed a three year study to answer the
fundamental question “Is all chatter bad?”, where time-domain simulation and experi-
ments were combined to: predict and verify the presence of period-2 to period-15 bifurca-
tions; apply subharmonic (periodic) sampling strategies to the automated identification
of bifurcation type; establish the sensitivity of bifurcation behavior to the system dynam-
ics, including natural frequency and damping; and predict and verify surface location
error (SLE) and surface roughness under both stable and period-2 bifurcation conditions.
These results are summarized. To aid in parameter selection that yields period-n behav-
ior, graphical tools including Poincar�e maps, bifurcation diagrams, and stability maps
are presented. [DOI: 10.1115/1.4041325]
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1 Introduction

Milling, or subtractive material removal using a rotating tool
with defined cutting edges (teeth), may be described by a system
of second-order, time-delay differential equations with inertial,
damping, and stiffness terms, as well as an external periodic forc-
ing function defined by the force required to shear away material
in the form of thin chips. A fundamental nonlinearity also exists
because the tool/part vibration can grow to a level where a tooth
leaves the cut when it would otherwise be engaged and the cutting
force subsequently drops to zero.

Due to the time delay, various bifurcations (i.e., the appearance
of a qualitatively different solution as a control parameter is var-
ied) are exhibited. These bifurcations include: (1) secondary Hopf
instability (traditional chatter); and (2) period-n motions (e.g., a
period-2, flip, or period doubling bifurcation). Operating under
secondary Hopf bifurcation conditions is avoided due to the large
tool and/or workpiece motions and cutting forces and, subse-
quently, poor workpiece surface finish, part accuracy, and poten-
tial damage to the workpiece-tool-spindle system. In this review,
however, a new question is posed. Can milling under period-n
bifurcation conditions at axial depths of cut that exceed the tradi-
tional (secondary Hopf) stability limit be leveraged to achieve
higher material removal rates, while still satisfying part accuracy
and surface finish requirements? To answer this question, a three-
year systematic study that incorporated both time-domain simula-
tion and experiments was completed to comprehensively explore
period-n bifurcation behavior in milling.

The paper is organized as follows: First, background informa-
tion on the significant prior work in milling stability and period-n
bifurcations is summarized. Second, the time-domain simulation
and experimental setups for the three-year study are described.
Third, period-n behavior is detailed, including the periodic sam-
pling strategy, Poincar�e maps, bifurcation diagrams, and stability
maps. Fourth, predictions and experiments for surface location
error (SLE) and surface roughness under both stable and period-2
bifurcation conditions are presented. Finally, conclusions are
provided.

2 Background

Analytical and numerical modeling of milling operations has
enjoyed a rich history. During the mid19th century, self-excited
vibrations that can occur during milling were first described using
time-delay differential equations [1,2]. The feedback mechanism
(i.e., the time delay term) was defined as “regeneration of
waviness,” where the previously cut surface combined with the
instantaneous vibration state dictates the current chip thickness,
force level, and corresponding vibration response [3–6]. This
work resulted in frequency-domain, analytical algorithms that
were used to produce the now well-known stability lobe diagram
that separates the spindle speed-chip width domain into regions of
stable and unstable behavior [5–18]; see Fig. 1.

In 1998, Davies et al. used once per revolution sampling to
characterize the synchronicity of cutting tool motions with the
tool rotation in milling [19]. They observed the traditional second-
ary Hopf bifurcation [20], as well as period-3 tool motion (i.e.,
motion that repeated with a period of three cutter revolutions) dur-
ing partial radial immersion milling. In 2000, Davies et al. further

Fig. 1 Example stability lobe diagram. Stable and unstable
zones are separated by the stability boundary (or limit). The
control parameters are chip width, or axial depth of cut in mill-
ing, and spindle speed, which defines the forcing frequency
and time delay between teeth.
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examined the stability of highly interrupted machining [21] by
developing a two-stage map to describe: (1) noncutting motions
governed by an analytical solution; and (2) motions during cutting
using an approximation (fixed tool position with a change in
momentum). They reported a doubling of the number of optimally
stable spindle speeds when the time in cut is small. Experiments
confirmed the new, low radial immersion best speeds. Davies’
work led to follow-on studies in milling bifurcations that included
advanced simulation strategies and new process insights.

In 2001, Moon and Kalm�ar-Nagy reviewed the “prediction of
complex, unsteady and chaotic dynamics” in machining [20].
They listed the various contributors to nonlinear behavior, includ-
ing the loss of tool-workpiece contact due to large amplitude
vibration and workpiece material constitutive relations, and high-
lighted previous applications of nonlinear dynamics methods to
the study of chatter [22–27]. They also specified the use of phase-
space methods, such as Poincar�e maps, to identify changes in
machining process dynamics.

Time-domain simulation has been used extensively to study
milling behavior [28,29]. For example, Zhao and Balachandran
implemented time-domain simulation, which incorporated the loss
of tool-workpiece contact and regeneration, to study the process
dynamics [30]. They identified secondary Hopf bifurcation and
suggested that “period-doubling bifurcations are believed to
occur” for low radial immersions. They included bifurcation dia-
grams for limited axial depth of cut ranges at two spindle speeds
to demonstrate the two bifurcation types.

Davies et al. extended their initial work in 2002 to present the
first analytical stability boundary for highly interrupted machining
[31]. It was based on modeling the cutting process as a kicked har-
monic oscillator with a time delay and followed the two-stage
map concept described in Ref. [21]. They used the frequency con-
tent of a microphone signal to establish the existence of both sec-
ondary Hopf and period-2 instabilities. Mann et al. also provided
experimental validation of secondary Hopf and period-2 instabil-
ities for up and down milling [32]. They reported “a kind of
period triple phenomenon” observed using the once per revolution
sampled displacement signal recorded from a single degree-of-
freedom (SDOF) flexure-based machining platform.

The semidiscretization, time finite element analysis, and multi-
frequency methods were also developed to produce milling stabil-
ity charts that predict both instabilities [33–37]. In Ref. [38], it
was shown using the semidiscretization method that the period-2
bifurcation exhibits closed curves within the secondary Hopf
lobes, except for the highest speed stability lobe. Simultaneous
secondary Hopf (quasi-periodic) and period-2 bifurcation behav-
ior was also observed. It was reported that this “combination”
behavior occurred at unstable axial depths of cut above the
period-2 lobes. Additionally, period-3 behavior was seen and it
was noted that this “periodic chatter” with period-3 (or higher)
always occurred above a secondary Hopf stability limit. The same
group [39] reported further experimental evidence of secondary
Hopf, period-2, -3, -4, and combined secondary Hopf and period-
2 chatter, depending on the spindle speed-axial depth values for a
two degree-of-freedom dynamic system. Budak and Altintas pre-
sented a multi-frequency solution for the stability boundary that
also predicts period-2 behavior [40,41]. A comparison of the
multi-frequency and semidiscretization methods is presented in
Ref. [42].

A perturbation analysis was performed in Ref. [43] to identify
the secondary Hopf and period-2 bifurcations and increase the
parameter space exploration efficiency. Additionally, numerical
integration was implemented to construct a bifurcation diagram
for a selected spindle speed that demonstrated the transition from
stable operation to quasi-periodic chatter as the axial depth is
increased. St�ep�an et al. continued to explore the nonlinear aspects
of milling behavior in 2005 [44]. They described stable period-2
motion where the tool does not contact the workpiece in each
tooth period (even in the absence of runout). For a two flute cutter,
for example, only one tooth contacts the workpiece per revolution;

they referred to this condition as the “fly over effect” and included
a bifurcation diagram for these proposed stable and unstable
period-2 oscillations.

The effect of the helix angle on period-2 behavior was studied
by Zatarain et al. [45]. They found that, depending on the helix
angle, the closed curves within the secondary Hopf lobes change
their size and shape. They also found that these closed islands of
stability can appear even in the highest speed stability lobe (in
contrast to the results when helix angle is not considered). This
work was continued in Ref. [46], where the authors showed that at
axial depths equal to the axial pitch of the cutter teeth, the equa-
tion of motion becomes an autonomous delay differential equation
so the period-2 behavior is not possible. Patel et al. studied the
helix effect in up and down milling using the time finite element
approach in Ref. [47]. Bobrenkov et al. used the time finite ele-
ment and Chebyshev collocation methods to investigate the influ-
ence of simultaneously engaged teeth on milling bifurcations [48].
It was observed that multiple teeth engagement with three or more
teeth yielded smaller period-2 regions.

In recent work, Moradi et al. included tool wear and process
damping in the bifurcation analysis of milling behavior [49].
Cheng et al. presented a reconstructed vibration signal in state
space for ultra precision machining [50]. Honeycutt and Schmitz
presented “extended milling bifurcation diagrams” that revealed
higher order period-n bifurcations at depths of cut well above the
traditional stability limit [51]. Period-n bifurcations were pre-
dicted and experimentally validated for milling in Refs. [52] and
[53]. A new metric was described that automatically differentiates
between stable and unstable behavior of different types for time-
domain simulation of the milling processes [54,55]. The approach
was based on periodic sampling of milling signals at once per
tooth period, s, and integer multiples of the tooth period, ns.

3 Time-Domain Simulation and Experimental Setup

3.1 Time-Domain Simulation. Time-domain simulation ena-
bles the numerical solution of the coupled, time delay equations
of motion for milling in small time steps. It is well suited to incor-
porating all the intricacies of milling dynamics, including the non-
linearity that occurs if the tooth leaves the cut due to large
amplitude vibrations and complicated tool geometries (including
runout, or different radii, of the cutter teeth, nonproportional teeth
spacing, and variable helix). The simulation is based on the regen-
erative force, dynamic deflection model described by Smith and
Tlusty [28]. As opposed to stability maps that provide a global
picture of the stability behavior, time-domain simulation provides
information regarding the local cutting force and vibration behav-
ior (at the expense of computational efficiency) for the selected
cutting conditions. The simulation used in this study proceeds as
follows (see Fig. 2):

(1) the instantaneous chip thickness is determined using the
vibration of the current and previous teeth at the selected
tooth angle

(2) the cutting force components in the tangential (t) and nor-
mal (n) directions are calculated using

Ft tð Þ ¼ ktcbh tð Þ þ kteb

Fn tð Þ ¼ kncbh tð Þ þ kneb
(1)

where b is the axial depth of cut, h(t) is the instantaneous
chip thickness, and the cutting force coefficients are identi-
fied by the subscripts t or n for direction and c or e for cut-
ting or edge effect.

(3) the force components are used to find the new displace-
ments by numerical solution of the differential equations of
motion in the x (feed) and y directions:

mx€x þ cx _x þ kxx ¼ Ft tð Þcos/þ Fn tð Þsin/
my€y þ cy _y þ kyy ¼ Ft tð Þsin/� Fn tð Þcos/

(2)
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where m is the modal mass, c is the modal viscous damping
coefficient, and k is the modal stiffness. The subscripts
identify the direction and multiple degrees of freedom in
each direction can be accommodated.

(4) the tool rotation angle is incremented and the process is
repeated.

The instantaneous chip thickness depends on the nominal, tooth
angle-dependent chip thickness, the current vibration in the direc-
tion normal to the surface, and the vibration of previous teeth at
the same angle. The chip thickness can be expressed using the cir-
cular tooth path approximation as:

h tð Þ ¼ ftsin/þ n t� sð Þ � n tð Þ (3)

where ft is the commanded feed per tooth, / is the tooth angle, n
is the normal direction (see Fig. 2), and s is the tooth period. The
tooth period is defined as

s ¼ 60

XNt
sð Þ (4)

where X is the spindle speed in rpm and Nt is the number of teeth.
The vibration in the direction of the surface normal for the current
tooth depends on the x and y vibrations as well as the tooth angle
according to:

n ¼ x sin/� y cos/ (5)

For the simulation, the strategy is to divide the angle of the cut
into a discrete number of steps. At each small time-step, dt, the
cutter angle is incremented by the corresponding small angle, d/.
This approach enables convenient computation of the chip thick-
ness for each simulation step because: (1) the possible teeth orien-
tations are predefined; and (2) the surface created by the previous
teeth at each angle may be stored. The cutter rotation

d/ ¼ 360

SR
degð Þ (6)

depends on the selection of the number of steps per revolution,
SR. The corresponding time-step is

dt ¼ 60

SRX
sð Þ (7)

A vector of angles is defined to represent the potential orientations
of the teeth as the cutter is rotated through one revolution of the
circular tool path, /¼ [0, d/, 2 d/, 3 d/, …, (SR – 1) d/]. The
locations of the teeth within the cut are then defined by referenc-
ing entries in this vector.

In order to accommodate the helix angle for the tool’s cutting
edges, the tool may be sectioned into a number of axial slices.
Each slice is treated as an individual straight tooth end mill, where
the thickness of each slice is a small fraction, db, of the axial
depth of cut, b. Each slice incorporates a distance delay

rv ¼ db tanc (8)

relative to the prior slice (nearer the cutter free end), which
becomes the angular delay between slices

v ¼ db tanc
r
¼ 2db tanc

d
radð Þ (9)

for the rotating end mill, where d is the end mill diameter and c is
the helix angle. In order to ensure that the angles for each axial
slice match the predefined tooth angles, the delay angle between
slices is

v ¼ d/ (10)

This places a constraint on the db value. By substituting d/ for v
and rearranging, the required slice width is

db ¼ d d/ð Þ
2 tan c

(11)

This simple description can be extended to include:

(1) multiple tool modes—the x and y forces are used to calcu-
late the acceleration, velocity, and displacement for each
tool mode (represented by the modal parameters) and the
results are summed in each direction

(2) flexible workpiece—the x and y forces are also used to
determine the workpiece deflections, again by numerical
integration, and the relative tool-workpiece vibration is
used to calculate the instantaneous chip thickness

(3) runout of the cutter teeth—the chip thickness is updated by
the runout of the current tooth

(4) unequal teeth spacing—the tooth angle vector is modified
to account for the actual tooth pitch.

Using this time-domain simulation approach [55], the forces,
displacements, and velocities may be calculated. These results are
then sampled once-per-tooth period to generate Poincar�e maps,
bifurcation diagrams, and stability maps.

3.2 Experimental Setup. Experiments were completed using
a SDOF flexure to define the system dynamics, where the SDOF
flexure was much less stiff than the cutting tool [32]. The flexure
setup (see Fig. 3) also simplified the measurement instrumenta-
tion. The flexure motions were measured using a Lion Precision
DMT20 capacitance probe (CP) (displacement), Polytec OFV-
5000 laser vibrometer (LV) (velocity), and PCB 352C23 low
mass piezoelectric accelerometer (acceleration). In order to enable
once-per-tooth sampling of the vibration signals, a laser tachome-
ter (LT) was used. A small section of reflective tape was attached
to the tool holder and the corresponding (digital) tachometer sig-
nal was used to perform the periodic sampling.

4 Period-n Bifurcations

4.1 Periodic Sampling. In milling, the tooth period (and
therefore the time delay) is defined by the spindle speed and

Fig. 2 Milling simulation geometry. The normal and tangential
direction cutting forces, Fn and Ft, are identified. The fixed x
and y directions, as well as the rotating normal direction, n, are
also shown. The angle / defines the tooth angle. The tool feed
is to the right for the clockwise tool rotation and the axial depth
is in the z direction.
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number of teeth; see Eq. (4). To evaluate the process performance,
the time-domain signals may be sampled at the tooth period (i.e.,
once-per-tooth sampling). If the once-per-tooth sampled points
repeat, the response is periodic with the forcing function and the
process is stable. If not, the character of the once-per-tooth
sampled points can be used to identify the bifurcation type. To
complete this evaluation visually, a Poincar�e map can be used.

4.2 Poincar�e Maps. In this work, Poincar�e maps were con-
structed using both experiments and simulations. For the experi-
ments, the displacement and velocity of a flexible workpiece (the
tool dynamic stiffness was much higher) were recorded using a
capacitance probe and laser vibrometer and then sampled once-
per-tooth period using a laser tachometer. In simulation, the dis-
placement and velocity were predicted, but the same sampling
strategy was applied. By plotting the displacement versus veloc-
ity, the phase space trajectory could be observed in both cases.
The once-per-tooth period samples were then superimposed and
used to interrogate the milling process behavior.

For stable cuts, the motion is periodic with the tooth period, so
the sampled points repeat and a single grouping of points is
observed. When secondary Hopf instability occurs, the motion is
quasi-periodic with tool rotation because the chatter frequency is
(generally) incommensurate with the tooth passing frequency. In
this case, the once-per-tooth sampled points do not repeat and
they form an elliptical distribution. For a period-2 bifurcation, the
motion repeats only once every other cycle (i.e., it is a subhar-
monic of the forcing frequency). In this case, the once-per-tooth
sampled points alternate between two solutions. For period-n
bifurcations, the sampled points appear at n distinct locations in
the Poincar�e map.

To demonstrate these behaviors, Figs. 4–9 are included. For a
selected milling system, the spindle speed was varied for fixed
radial and axial depths of cut. Figures 4 and 5 show the time
domain response and Poincar�e map for stable conditions (forced
vibration). It is observed that the once-per-tooth sampled points
repeat with each tooth passage in this case.

Figures 6 and 7 demonstrate a period-2 bifurcation. At the new
spindle speed, the behavior repeats every other tooth passage.
This yields alternating points in the time domain plot and two sets
of points in the Poincar�e map.

Figures 8 and 9 display the results for a secondary Hopf bifur-
cation. The introduction of the new chatter frequency (in addition
to the tooth passing frequency) provides an elliptical distribution
of points in the Poincar�e map for this quasi-periodic behavior.

4.3 Bifurcation Diagrams. In the bifurcation diagrams
developed for this study, the once-per-tooth sampled displacement
(vertical axis) was plotted against the axial depth of cut

(horizontal axis). The transition in stability behavior from stable
(at low axial depths) to period-n or secondary Hopf instability (at
higher axial depths) is then directly observed. This diagram repre-
sents the information from multiple Poincar�e maps over a range of
axial depths, all at a single spindle speed. A stable cut appears as
a single point (i.e., the sampled points repeat when only forced
vibration is present). A period-2 bifurcation, on the other hand,
appears as a pair of points offset from each other in the vertical
direction. This represents the two collections of once-per-tooth
sampled points from the Poincar�e map. A secondary Hopf bifurca-
tion is seen as a vertical distribution of points; this represents the
range of once-per-tooth sampled displacements from the elliptical
distribution of points in the Poincar�e map.

4.4 Stability Maps. Stability maps, or stability lobe dia-
grams, identify the limiting axial depth of cut (vertical axis) as a
function of spindle speed (horizontal axis). Traditionally, this
limit is represented as a single contour which separates stable
(forced vibration only) from unstable (secondary Hopf or period-
n) parameter combinations. This map provides a global view of
the stability behavior, but does not, in general, identify the type of
instability. Because a bifurcation diagram presents the stability
behavior as a function of axial depth, but only at one spindle
speed, it can be considered as a high fidelity vertical slice of a sta-
bility map. Conversely, a stability map can be interpreted as a
series of bifurcation diagrams where a binary switching function
is used to categorize the behavior represented by the vertical dis-
tribution of once-per-tooth sampled points as either stable or
unstable.

4.5 Period-n Numerical and Experimental Results. In this
section, comparisons are made between time-domain simulation
predictions and milling experiments for period-n bifurcations
using multiple flexures. The cutting tool was a 19.1 mm diameter,
single flute carbide square end mill (30 deg helix angle). Modal
impact testing verified that the cutting tool dynamic stiffness
(1055 Hz natural frequency, 0.045 viscous damping ratio, and
4.2� 107 N/m stiffness for a single mode fit) was much higher
than the SDOF flexure. Cutting tests were completed using Fig. 3
setup. The measured flexure dynamics and cutting conditions are
listed in Table 1. Each cut of the 6061-T6 aluminum workpiece
was performed using a feed per tooth of 0.10 mm/tooth. The
aluminum alloy cutting force coefficients were: ktc¼ 792� 106

N/m2, knc¼ 352� 106 N/m2, kte¼ 26� 103 N/m, and
kne¼ 28� 103 N/m.

A bifurcation diagram for a spindle speed of 3800 rpm and
radial depth of 5 mm was predicted by simulation and then cuts
were performed from 1 mm to 7 mm axial depths in 0.5 mm steps.
The capacitance probe displacement signal was sampled using the
laser tachometer to construct an experimental bifurcation diagram.
Figures 10–17 provides the comparison between prediction and
experiment. For this axial depth of cut range, period-3 bifurcations
were observed (see the period-3 entry from Table 1 for the flexure
dynamics).

A simulated stability map for the same axial depth of cut range
as Fig. 17, but spindle speeds from 3300 rpm to 4300 rpm is dis-
played in Fig. 18 (the same dynamics were again used). The dia-
gram was constructed by completing time-domain simulations
over a grid with a spindle speed resolution of 10 rpm and an axial
depth resolution of 0.1 mm.

To construct the stability map using time-domain simulation
results, a separate simulation was completed at each position in
the selected grid of spindle speed and axial depth values. A pri-
mary challenge in this approach, however, is automatically estab-
lishing the stability limit using the predicted time domain signals.
As described in Ref. [54], a stability criterion based on the once-
per-tooth sampled data was implemented. The stability metric was

Fig. 3 Milling experimental setup with instrumentation includ-
ing a LV, piezo-accelerometer, LT, and CP. The setup was
located on a Haas TM-1 CNC milling machine.
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M1 ¼

PN
i¼2

xs1 ið Þ � xs1 i� 1ð Þ
�� ��

N
(12)

where xs1 is the vector of once-per-tooth sampled x displacements
and N is the length of the xs1 vector. Other variables, such as y dis-
placement or cutting force could be selected as well. With this sta-
bility metric, the absolute value of the differences in successive
sampled points is summed and then normalized. The sampled
points repeat for a stable cut, so the M1 value is ideally zero. For
unstable cuts, on the other hand, M1 > 0, due to the asynchronous
motion in secondary Hopf instability and jumps from one fixed
point to the next in period-n bifurcations.

The initial transients were removed and the M1 value for each
simulation was calculated (see Eq. (12)). An arbitrarily small
value of 1 lm was selected to differentiate between stable and
unstable parameter combinations; this contour is shown in Fig. 18
and identifies the stability limit. The transition from stable to
unstable behavior at 3800 rpm observed in Fig. 17 is replicated.
The transition from secondary Hopf to period-3 to secondary
Hopf seen in the bifurcation diagram is not detailed in the stability
map, however. This limitation is addressed in Sec. 4.7.

4.6 Period-n Bifurcation Sensitivity to System Dynamics.
Table 1 shows that different bifurcation behavior was obtained for
varying flexure dynamics. This suggests that the system dynamics
play a critical role in the period-n behavior that is obtained. To
explore this sensitivity, additional experiments were performed.

A first set of experiments was completed to demonstrate the
sensitivity of the period-n bifurcation behavior to natural fre-
quency. During the cutting trials, material was removed from the
workpiece. This lowered the workpiece mass and, subsequently,
increased the flexure’s natural frequency. Since the mass of the
chips is much smaller than the workpiece, this material removal
resulted only in small changes in natural frequency. The variation
in system dynamics for the results presented in Figs. 19–22 is pro-
vided in Table 2. The higher period-n bifurcations exhibited suffi-
cient sensitivity to flexure natural frequency that, within a single
cut, both period-n bifurcation and quasi-periodic behavior (sec-
ondary Hopf bifurcation) were observed. For these tests, the cut-
ting tool was a 19.1 mm diameter, single flute carbide square end
mill (30 deg helix angle). The cutting tool dynamic response was:
1055 Hz natural frequency, 0.045 viscous damping ratio, and
4.2� 107 N/m stiffness. Each cut of the 6061-T6 aluminum work-
piece was performed using a feed per tooth of 0.10 mm/tooth.
The aluminum alloy cutting force coefficients were:

ktc¼ 792� 106 N/m2, knc¼ 352� 106 N/m2, kte¼ 26� 103 N/m,
and kne¼ 28� 103 N/m.

Figures 19–22 display the flexure’s feed direction velocity
(dx/dt) in the time domain. The continuous signal is displayed as a
solid line, while the circles are the once-per-tooth sampled points.
In each figure, the left plot shows the simulated behavior and the
right plot shows the experimental behavior. Good agreement is
observed. The time-domain simulation was modified to account
for the changing natural frequency due to mass loss. After each
time-step, the change in mass was calculated based on the volume
of the removed chip and the density of the workpiece material
(2700 kg/m3). This change in mass was then used to update the
flexure’s natural frequency for the next time-step.

A summary of the behavior seen in Figs. 19–22 is provided
here.

(1) Figure 19 exhibits period-6 behavior from 4 to 11 s, fol-
lowed by quasi-periodic behavior until the end of the cut.

(2) Figure 20 shows period-6 behavior from 4 to 13 s and then
quasi-periodic behavior is observed until the end of the cut.

(3) Figure 21 displays quasi-periodic behavior from the begin-
ning of the cut until 11 s and then period-7 behavior from
11 to 15 s.

(4) Figure 22 exhibits quasi-periodic behavior from the begin-
ning of the cut until 8 s, period-15 behavior from 8 to 13 s,
and then quasi-periodic behavior until the end of the cut.

In addition to the changes in bifurcation behavior with natural
frequency, the sensitivity to damping was evaluated in a second

Fig. 4 Time domain results for a stable cut (3400 rpm). (Top) time-dependent displacement
with periodic samples (circles); (bottom) time-dependent velocity with periodic samples.
(Inset) higher magnification view to observe individual periodic samples of the displacement
(top) and velocity (bottom).

Fig. 5 Poincar�e map for stable cut (3400 rpm). The sampled
points align at a single location for the forced vibration case.
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set of tests. In order to vary the experimental damping, the
flexure-based setup displayed in Fig. 3 was replaced with a second
flexure to enable adjustable viscous damping. The approach was
to add an eddy current damper to the flexure as described in Ref.
[52]; see Fig. 23. In the figure, it is seen that a copper conductor is
attached to the moving platform. As the conductor moves through
the magnetic field generated by the permanent magnets (PM)
located on each side, a velocity-dependent force is produced,
which opposes the motion. The effect is viscous damping that can

be increased or decreased by changing the gap between the con-
ductor and magnets.

To explore the sensitivity of period-n behavior to damping,
machining trials were conducted over a range of axial depths of cut
(1 mm–10 mm) with four different flexure damping values. In all
cases, the spindle speed was 3310 rpm, the radial depth of cut was
2 mm, and the feed per tooth was 0.1 mm/tooth. The cutting tool was
a 19.1 mm diameter, single flute carbide square end mill (30 deg helix
angle): 1055 Hz natural frequency, 0.045 viscous damping ratio, and
4.2� 107 N/m stiffness. The 6061-T6 aluminum alloy cutting force
coefficients were: ktc¼ 792� 106 N/m2, knc¼ 352� 106 N/m2,
kte¼ 26� 103 N/m, and kne¼ 28� 103 N/m. Table 3 details the
tunable flexure dynamics for the four damping values.

Simulated and experimental bifurcation diagrams are presented
in Figs. 24–27 for the dynamics defined in Table 3. It is observed
that as the damping increases, the region of period-2 behavior
diminishes in size and, in Fig. 27 with a damping ratio of 3.55%,
it disappears all together. The stable behavior persists up to an
axial depth of approximately 4 mm for Figs. 24–27. The period-2
behavior is then seen for decreasing ranges of axial depth as the
damping increases. It continues to approximately 8.2 mm for
1.47%, to approximately 7.6 mm for 1.91%, and to approximately
6.8 mm for 2.34%. In all cases, the period-2 behavior is followed
by a second stable zone at higher axial depths.

To observe the global behavior, stability maps were generated
using the same time domain simulation implemented to construct
Figs. 24–27. The spindle speed range was 2600 rpm to 3800 rpm
in steps of 20 rpm and the axial depth range was 0.2 mm to 10 mm
in steps of 0.2 mm. The results are presented in Fig. 28, where a
vertical line is added to each panel at 3310 rpm to indicate the

Fig. 6 Time domain results for a period-2 bifurcation (3310 rpm)

Fig. 7 Poincar�e map for period-2 bifurcation (3310 rpm). The
sampled points align at a two fixed locations for the period-2
bifurcation.

Fig. 8 Time domain results for a secondary Hopf bifurcation
(2850 rpm)

Fig. 9 Poincar�e map for secondary Hopf bifurcation (2850
rpm). The sampled points are arranged in an elliptical
distribution.
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position of the bifurcation diagrams in Figs. 24–27. The stability
metric defined in Eq. (12) was used to identify stable and unstable
conditions for each grid point.

4.7 Subharmonic Sampling. As shown in Fig. 18, the M1
stability metric defined in Eq. (12) does not seperately identify
secondary Hopf and period-n bifurcations. However, using sub-
harmonic sampling at ns (n¼ 2, 3, 4, …), the corresponding
period-n bifurcations can be separately established [55]. For
example, when sampling at 2s, the stability metric becomes
“blind” to period-2 bifurcations. By sampling at every other tooth
passage (2s), the period-2 behavior appears as synchronous
motion (stable). The same is true for period-3 bifurcations if the
sampling interval is 3s, and so on.

Considering the same dynamic system used for Fig. 18 (period-
3 experimental setup from Table 1), a simulation was performed
for a spindle speed of 4070 rpm at an axial depth of 3.6 mm. This
is within the unstable island in Fig. 18. The time history and

Poincar�e map are displayed in the top row of Fig. 29 for once-per-
tooth sampling. A period-2 bifurcation is observed. The M1 value
is 106.7 lm for the period-2 bifurcation; this value was calculated
from the flexure (workpiece) x direction displacement for the final
75 tooth periods of a 750 tooth period simulation. The bottom row
shows the results for 2s subharmonic sampling. The metric for
this case is

M2 ¼

PN
i¼2

xs2 ið Þ � xs2 i� 1ð Þ
�� ��

N
(13)

where xs2 is the vector of x displacements sampled once every
other tooth period (i.e., a 2s sampling period), and N is the length
of the xs2 vector. It is observed that the cut now appears to be
stable; the M2 value is 1.2� 10�9 lm ffi 0. Generically, the
metric can be expressed as shown in Eq. (14), where the integer
n¼ 1, 2, 3, … defines the sampling period (i.e., ns)

Table 1 Cutting conditions and flexure dynamics for experiments

Cutting conditions Flexure dynamics

Period-n
(figure number)

Spindle
speed (rpm)

Axial depth,
b (mm)

Radial
depth (mm)

Stiffness
(N/m)

Natural
frequency (Hz)

Viscous damping
ratio (%)

2 (10) 3486 2.0 1.0 9.0� 105 83.0 2.00
3 (11) 3800 4.5 5.0 5.6� 106 163.0 1.08
6 (12) 3200 18.0 1.0 5.6� 106 202.6 0.28
6 (13) 3250 15.5 1.0 5.6� 106 205.8 0.28
7 (14) 3200 14.5 1.0 5.6� 106 204.1 0.28
8 (15) 3310 15.0 2.0 2.1� 106 130.1 1.47
15 (16) 3200 14.0 1.0 5.6� 106 204.8 0.28

Fig. 10 Poincar�e map for period-2 bifurcation. (Left) simulation, (right) experiment. The phase
space trajectory is represented by the solid line and the once-per-tooth sampled points are
displayed as circles.

Fig. 11 Poincar�e map for period-3 bifurcation. (Left) simulation, (right) experiment.
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Fig. 14 Poincar�e map for period-7 bifurcation. (Left) simulation, (right) experiment.

Fig. 13 Poincar�e map for a second period-6 bifurcation. (Left) simulation, (right) experiment.

Fig. 15 Poincar�e map for period-8 bifurcation. (Left) simulation, (right) experiment.

Fig. 12 Poincar�e map for period-6 bifurcation. (Left) simulation, (right) experiment.
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Mn ¼

PN
i¼2

xsn ið Þ � xsn i� 1ð Þ
�� ��

N
(14)

Next, the stability map shown in Fig. 12 was developed using ns
sampling with n¼ 1, 2, 3, and 4. These results are provided in
Fig. 30. In panel a), once per tooth sampling (s sampling period)
was applied to calculate M1 using Eq. (12). A single contour is
plotted at M1 ¼ 1 lm. For panel b), the sampling period is 2s. It
is seen that the unstable island no longer appears. This follows
from Fig. 29, where it is seen that the 2s sampling is blind to
period-2 bifurcations. A single contour is plotted at M2 ¼ 1 lm
according to Eq. (13). In panel (c), 3s sampling is applied. The
period-2 bifurcation zone re-appears as seen panel (a), but a new
“stable” zone is also visible. This is the region of period-3 bifurca-
tions that is was not previously visible with the once-per-tooth
sampling approach. Panel (d) displays the results for 4s sampling.
The period-2 bifurcations are again eliminated because 2s is a fac-
tor of 4s. However, a new stable band also appears to the left of
the period-3 bifurcation zone in panel c). This new band identifies
period-4 bifurcations and would not have been discovered without
subharmonic sampling. In panels (c) and (d), the stability metric
(Eqs. (12) and (13)) was updated to accommodate the new sam-
pling periods and a single contour at a metric value of 1 lm was
plotted.

The subharmonic sampling approach is now implemented to
construct a stability map that individually identifies each bifurca-
tion type. The metrics M1 through M7, which represent s through
7s integer sampling periods, are used to isolate the stable zone as
well as the different bifurcation types: period-2, -3, -4, -5, -6, -7,
and secondary Hopf. The logic used to construct the stability map
follows:

if M1 � 1 lm
(stable, do nothing)

elseif M2 � 1 lm
plot a circle (period-2)

elseif M3 � 1 lm
plot a triangle (period-3)

elseif M4 � 1 lm and M2 >1 lm
plot a square (period-4, excludes period-2)

elseif M5 � 1 lm

Fig. 16 Poincar�e map for period-15 bifurcation. (Left) simulation, (right) experiment.

Fig. 17 Bifurcation diagram for 3800 rpm and 5 mm radial depth of cut. (Left) simulation,
(right) experiment.

Fig. 18 Simulated stability map for period-3 experimental
setup from Table 1 (M1 5 1 lm contour). The transition from sta-
ble to unstable behavior occurs at approximately 2.6 mm for a
spindle speed of 3800 rpm. The inset shows the bifurcation dia-
gram progression at 3800 rpm from stable to quasi-periodic
instability to period-3 and back to quasi-periodic behavior.
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Fig. 19 Variation in bifurcation behavior with changes in natural frequency. The natural fre-
quency changes with time as more material is removed. Period-6 bifurcation is observed.
(Left) simulation, (right) experiment.

Fig. 20 Variation in bifurcation behavior with changes in natural frequency. Period-6 bifurca-
tion is observed. (Left) simulation, (right) experiment.

Fig. 21 Variation in bifurcation behavior with changes in natural frequency. Period-7 bifurca-
tion is observed. (Left) simulation, (right) experiment.

Fig. 22 Variation in bifurcation behavior with changes in natural frequency. Period-15 bifurca-
tion is observed. (Left) simulation, (right) experiment.
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plot aþ (period-5)elseif M6 � 1 lm and M2 >1 lm and
M3 >1 lm

plot a diamond (period-6, excludes period-2 and period-3)
elseif M7 � 1 lm

plot an� (period-7)
else

plot a dot (secondary Hopf or high order period-n)
end

The result is displayed in Fig. 31. The stable zone is the open
white area and the various instabilities are indicated by the sym-
bols. The box in the figure indicates the spindle speed range and

axial depth (6.4 mm) for the bifurcation diagram in Fig. 32. By
following the bifurcations in the map from period-2 (circle), to -3
(triangle), to -4 (square), to -5 (þ), to -6 (diamond), to -7 (�), it
appears that a pattern is emerging. Within the single stability lobe,
the increasing order shifts the period-n zones to progressively
lower spindle speeds. Also, the size of the zones diminishes with
increasing order. The period numbers for the various zones are
provided above the stability map. For period-5 and -7 bifurcations,
there are additional zones; these are denoted by parenthetical
order numbers in Fig. 31. There is one extra zone for period-5 and
two for period-7.

For the SDOF dynamic systems explored here, the spindle
speeds for the period-n bifurcations can be expressed analytically.
The derivation is based on the “best speeds,” Xbest;j (rpm), equa-
tion available from the analytical milling stability analysis [54],
where fn is the natural frequency (Hz) corresponding to the most
flexible vibration mode and j ¼ 1; 2; 3;….

Xbest;j ¼
60fn
jNt

(15)

In this equation, j is the stability lobe number and orders the sta-
bility lobes in descending spindle speeds. For example, j ¼ 1 is
the rightmost lobe in the stability map. For the period-n bifurca-
tion speeds above the jth best speed (j � 2), the corresponding
expression is

Xperiod�n;j ¼ Xbest;j þ
Xbest;j�1 � Xbest;j

n

� �
(16)

Substituting for Xbest;j and Xbest;j�1 from Eq. (15) and simplifying
gives:

Xperiod�n;j ¼
60fn
Nt

n j� 1ð Þ þ 1

n j� 1ð Þj

� �
(17)

For the additional odd n � 5 bifurcation zones observed in Fig.
28, Eq. (16) is modified to be

Xperiod�n;j ¼ Xbest;j þ 2
Xbest;j�1 � Xbest;j

n

� �
(18)

for the first extra zone (n ¼ 5 and n ¼ 7) and

Xperiod�n;j ¼ Xbest;j þ 3
Xbest;j�1 � Xbest;j

n

� �
(19)

Table 2 Changes in flexure natural frequency due to mass removal

Flexure dynamics Cutting conditions

Period-n
(figure number)

Natural frequency,
beginning of cut (Hz)

Natural frequency,
end of cut (Hz)

Change in natural
frequency (Hz)

Change in
mass (g)

Spindle
speed (rpm)

Axial
depth, b (mm)

Radial
depth (mm)

6 (19) 202.4 202.7 0.3 4.8 3200 18.0 1.0
6 (20) 205.7 205.9 0.2 4.1 3250 15.5 1.0
7 (21) 204.1 204.3 0.2 3.9 3200 14.5 1.0
15 (22) 204.7 204.9 0.2 3.7 3200 14.0 1.0

Table 3 Flexure dynamics for damping sensitivity experiments

Period-n
(figure number)

Stiffness
(N/m)

Natural
frequency (Hz)

Viscous damping
ratio (%)

2 (24) 2.1� 106 130.0 1.47
2 (25) 2.1� 106 130.0 1.91
2 (26) 2.1� 106 130.0 2.34
� (27) 2.1� 106 130.0 3.55

Fig. 23 Milling experimental setup with variable viscous damp-
ing. The setup includes a LV, piezo-accelerometer, LT, CP, mov-
ing conductor, and PM. The top photograph shows the flexure
without the PM; the copper conductor is visible inside the paral-
lelogram leaf-type flexure. The lower photograph shows the PM
in place. The magnets are positioned on both sides of the cop-
per conductor and provide the eddy current damping effect.
The setup was located on a Haas TM-1 CNC milling machine.

Journal of Manufacturing Science and Engineering DECEMBER 2018, Vol. 140 / 120801-11

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 12/07/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



for the second extra zone (n ¼ 7). Substituting Eq. (15) in
Eq. (18) and simplifying gives

Xperiod�n;j ¼
60fn
Nt

n j� 1ð Þ þ 2

n j� 1ð Þj

� �
(20)

Substituting Eq. (15) in Eq. (19) and simplifying yields

Xperiod�n;j ¼
60fn
Nt

n j� 1ð Þ þ 3

n j� 1ð Þj

� �
(21)

The application of Eqs. 17, 20, and 21 to Fig. 31 (fn ¼ 163 Hz) is
provided in Table 4. Considering j ¼ 3 and the corresponding best

speed of ð60 � 163=13Þ ¼ 3260 rpm, the period-n bifurcation
speeds were calculated.

5 Surface Location Error and Surface Roughness

When stable machining conditions are selected, two additional
considerations for high quality part manufacture are: (1) SLE, or
part geometric errors that occur due to forced vibrations; and (2)
surface roughness. SLE has been modeled and predicted for stable
milling conditions by several authors [36,56–70]. In these publica-
tions, the difference between the machined surface location and
the commanded location is measured and/or predicted to deter-
mine the influence of (stable) machining conditions on the error.
Similarly, surface roughness has been considered as an important

Fig. 24 Bifurcation diagram for 1.47% damping (3310 rpm). (Left) simulation, (right) experi-
ment. Stable behavior is observed up to approximately 4 mm, period-2 behavior then occurs
up to approximately 8 mm, then stable behavior is again seen.

Fig. 25 Bifurcation diagram for 1.91% damping (3310 rpm). (Left) simulation, (right)
experiment.

Fig. 26 Bifurcation diagram for 2.34% damping (3310 rpm). (Left) simulation, (right)
experiment.
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quality metric for machined parts since it influences fatigue, seal-
ing performance, wear, and esthetics, for example. However, prior
studies of period-n bifurcations (instabilities) have evaluated nei-
ther SLE nor surface roughness. The purpose of this section is to
predict and measure both quantities for stable and period-2 bifur-
cation behaviors. Numerical and experimental results are pre-
sented for SLE and arithmetic average surface roughness, Ra,
when milling under both stable and period-2 bifurcation
conditions [71].

5.1 Time-Domain Simulation Modification. To complete
SLE and Ra predictions, the time-domain simulation in Sec. 3.2
was augmented. Once the x and y direction displacements are
determined, the final spatial trajectory for each tooth is determined

by summing these vibration-induced displacements with the nom-
inal cycloidal motion of the teeth due to the combined translation
and rotation. This final spatial trajectory is used to define the
machined surface and, subsequently, to predict the SLE and Ra.
The nominal cycloidal motion components in the x and y direc-
tions are defined in Eqs. (22) and (23), where i is the time-step
index and df is the linear feed per time-step (see Eq. (24))

xnom ¼ rsin/þ idf (22)

ynom ¼ rcos/ (23)

df ¼ ftNt

SR
(24)

Fig. 27 Bifurcation diagram for 3.55% damping (3310 rpm). (Left) simulation, (right)
experiment.

Fig. 28 Simulated stability maps for four damping levels (M1 5 1 lm contours). (Top left)
1.47% damping. As the axial depth is increased, the transition from stable to period-2 (3.8
mm), period-2 back to stable (8.2 mm), and stable to quasi-periodic behavior (9.2 mm) is
observed. (Top right) 1.91% damping. As the axial depth is increased, the transition from sta-
ble to period-2 (4.2 mm) and period-2 back to stable (7.6 mm) occurs. (Bottom left) 2.34%
damping. As the axial depth is increased, the transition from stable to period-2 (4.6 mm) and
period-2 back to stable (6.8 mm) is observed. (Bottom right) 3.55% damping. Stable behavior
is obtained at all axial depths.
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Fig. 29 Simulation results for a spindle speed of 4070 rpm at an axial depth of 3.6 mm. The
workpiece x displacement and velocity are shown. (Top row) Time history (left) and Poincar�e
map (right) for once per tooth sampling (s sampling period). (Bottom row) Time history (left)
and Poincar�e map (right) for subharmonic sampling at 2s.

Fig. 30 (a) Once per tooth sampling (s sampling period); (b) 2s sampling period; (c) 3s sam-
pling period; and (d) 4s sampling period. The zones that appear to be stable and unstable,
depending on the sampling period, are marked.
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5.2 Experimental Results. The flexure-based setup displayed
in Fig. 33 was used to define a physical system for simulation and
testing [32,72]. The setup included a parallelogram leaf-type flex-
ure with an aluminum workpiece mounted on top. The in-process
vibration data was collected using a Polytec OFV-5000 laser
vibrometer (velocity) and Lion Precision DMT20 capacitance
probe (displacement). Both were aligned with the flexible direc-
tion for the single degree-of-freedom flexure. Note that, unlike the
prior stability testing, the feed direction is perpendicular to this
flexible direction. This orientation was selected to emphasize var-
iations in surface location error and surface finish with machining
conditions. Once-per-tooth sampling was again accomplished
using a laser tachometer and reflective target attached to the rotat-
ing tool holder. The flexure dynamics were identified by modal
testing: 125.8 Hz natural frequency, 0.0136 viscous damping ratio,
and 1.75� 106 N/m stiffness in the flexible (feed) direction. The
dynamics for the 19.1 mm diameter, 0 deg helix angle cutting tool
(one insert) were symmetric: 1188 Hz natural frequency, 0.095
viscous damping ratio, and 4.24� 107 N/m stiffness. The 6061-T6

aluminum alloy cutting force coefficients were: ktc¼ 770� 106

N/m2, knc¼ 368� 106 N/m2, kte¼ 22� 103 N/m, and
kne¼ 22� 103 N/m. The up milling cutting conditions were: 5 mm
axial depth, 2 mm radial depth, 0.35 mm/tooth, and variable

Fig. 31 New stability map. Period-2 (circle), period-3 (triangle), period-4 (square), period-5
(1), period-6 (diamond), period-7 (3), and secondary Hopf (dot) bifurcations are individually
identified. The box indicates the spindle speed range and axial depth (6.4 mm) for the bifurca-
tion diagram in Fig. 32.

Fig. 32 Bifurcation diagram for an axial depth of 6.4 mm. Sec-
ondary Hopf (Hopf), period-2 (2), stable (Stable), and combina-
tion secondary Hopf and period-2 (Hopf-2) behaviors are
specified.

Table 4 Predicted period-n bifurcation speeds for Fig. 31
dynamic system

n Xperiod�n;3 (rpm) First extra zone (rpm) Second extra zone (rpm)

2 4075
3 3803
4 3668
5 3586 3912
6 3532
7 3493 3726 3959

Fig. 33 Surface location error/Ra experimental setup with LV,
LT, and CP. The feed direction and the flexible direction for the
SDOF flexure are also identified. The setup was located on a
Haas TM-1 CNC milling machine.
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spindle speed. Spindle speed values were selected to span from
period-2 to stable cutting conditions while holding all other
parameters constant. These spindle speeds and the corresponding
behaviors are listed in Table 5.

The workpiece geometry is presented in Fig. 34. The initial ribs
were machined directly on the flexure so it could be ensured that
the part was aligned with the machine axes. Low axial and radial
depths were selected to minimize vibration levels and the same
conditions were used to machine each rib. Prior to beginning the
SLE/Ra experiments, a test workpiece was machined and the four
ribs were measured on a coordinate measuring machine, or CMM,
to evaluate the repeatability of the starting rib dimensions (Zeiss

Prismo). The mean value was 9.82 mm with a standard deviation
of 2.8 lm. Given the adequate repeatability of the initial ribs, the
11 spindle speeds in Table 5 were used to machine 11 ribs (three
total workpieces). All machining conditions were identical other
than spindle speed.

The predicted and measured Poincar�e maps for three of the 11
spindle speeds are presented in Figs. 35–37. Figure 35 displays
the 3180 rpm results that exhibit period-2 behavior. Figures 36
and 37 both demonstrate stable behavior (3300 rpm and 3600 rpm,
respectively). The vibration amplitude is larger in Fig. 37 because
this spindle speed is nearer the first integer fraction of the resonant
spindle speed (125.8(60)/2¼ 7548/2¼ 3774 rpm). The forced
vibration amplitude is therefore increased. This would be consid-
ered a “best” spindle speed in traditional analyses because it iden-
tifies the peak of the corresponding secondary Hopf stability lobe.

Fig. 34 The workpiece included four ribs that were initially
machined to the same dimensions. The {5 mm axial depth,
2 mm radial depth} cuts were then performed on one edge at a
different spindle speed for each rib. The SLE was calculated as
the difference between the commanded, C, and measured, M,
rib widths. The flexible direction for the flexure is identified.

Fig. 36 Predicted (left) and measured (right) Poincar�e maps for 3300 rpm. Stable behavior is
seen.

Table 5 Spindle speeds and bifurcation behavior for
experiments

Spindle speed (rpm) Behavior

3180 Period-2
3190 Period-2
3200 Period-2
3210 Period-2
3270 Stable
3300 Stable
3330 Stable
3360 Stable
3400 Stable
3500 Stable
3600 Stable

Fig. 35 Predicted (left) and measured (right) Poincar�e maps for 3180 rpm. Period-2 behavior
is seen. Note that x indicates the flexible direction for the flexure. The feed direction was y for
these experiments.
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The SLE results are presented in Fig. 38. Four tests were com-
pleted under period-2 conditions and seven were performed under
stable conditions. Good agreement is observed between prediction
and measurement. The average error between prediction and mea-
surement is 0.5 lm for the 11 tests.

The surface roughness was evaluated using both the CMM and
a Zygo Zegage coherence scanning interferometer. Figures 39 and

40 provide a direct comparison between the time domain simula-
tion and the CMM surface points obtained by continuous scanning
along the machined surface. In these figures, the commanded sur-
face is identified by the dashed line, the solid line is the CMM
data, and the circles are the simulation results. The SLE is the dif-
ference between the commanded and actual surface and, again,
good agreement is observed between simulation and
measurement.

The coherence scanning interferometer results are presented in
Table 6, where the Ra values were calculated from a line scan at
the midpoint of the axial depth of cut extracted from the surface
topography. The Ra is clearly larger for the period-2 conditions,
where every other tool passage defines the surface roughness. The

Fig. 38 Surface location error prediction from time domain
simulation (line) and experimental results from rib cutting tests
(circles). The four period-2 bifurcation tests are identified.

Fig. 37 Predicted (left) and measured (right) Poincar�e maps for 3600 rpm. Stable behavior is
seen with increased amplitude relative to 3300 rpm (Fig. 36).

Fig. 39 Commanded surface (dashed line), CMM scan (solid
line), and simulation result (circles) for 3180 rpm (period-2).
These results correspond to Fig. 35.

Fig. 40 Commanded surface (dashed line), CMM scan (solid
line), and simulation result (circles) for 3300 rpm (stable). These
results correspond to Fig. 36.

Table 6 Surface roughness results for rib cutting tests

Spindle speed (rpm) Behavior Ra (lm)

3180 Period-2 1.76
3190 Period-2 1.77
3200 Period-2 1.87
3210 Period-2 2.09
3270 Stable 0.28
3300 Stable 0.35
3330 Stable 0.44
3360 Stable 0.34
3400 Stable 0.39
3500 Stable 0.36
3600 Stable 0.35
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mean Ra for the period-2 conditions (four tests, 1.87 lm) is 5.2
times larger than the mean Ra for the stable conditions (seven
tests, 0.36 lm).

6 High Spindle Speed Performance

A traditional stability lobe diagram was shown in Fig. 1. In this
diagram, the chatter-free axial depth of cut for the rightmost sta-
bility lobe theoretically increases without limit as the spindle
speed increases. Other than the work by Zatarain et al. [45], which
suggested the period-2 closed islands of stability can appear even
in the highest speed stability lobe for helical cutting edges, little
attention has been paid to the presence or absence of period-n
bifurcation behavior in this rightmost lobe. Using the validated
time-domain simulation demonstrated here, this behavior was
interrogated numerically. The system dynamics are the same as
those presented in Sec. 4.7 (163 Hz natural frequency, which cor-
responds to a “best speed” of 9790 rpm for the left side of the
rightmost stability lobe). The results are presented in Fig. 41,
where Eq. (14) sampling strategy was applied with n¼ 1, 2, 3,
…7. The same pattern observed in Fig. 32 emerges; note that the
secondary Hopf bifurcation boundary is identified by a single
solid line, rather than a dot at each simulation result.

7 Conclusions

Despite their relatively recent (1998) discovery, period-n bifur-
cations in milling have received significant attention in the litera-
ture. This review paper summarized: (1) these contributions; and
(2) a three year investigation of the efficacy of selecting period-n
behavior intentionally to produce machined parts. In this study,
the presence of period-2 to period-15 bifurcations was predicted
using time-domain simulation and validated experimentally. To
aid in parameter selection that yields period-n behavior, graphical
tools including Poincar�e maps, bifurcation diagrams, and stability
maps were presented. Additionally, the sensitivity to natural fre-
quency and damping was evaluated. It was observed that the
behavior can transition from secondary Hopf to period-n and vice
versa as the natural frequency changes, but the machining parame-
ters remain the same. It was also seen that increases in damping
can reduce or eliminate the presence of the period-2 island within
the traditional stable zone.

The question posed at the initiation of this comprehensive study
was: Can milling under period-n bifurcation conditions at axial
depths of cut that exceed the traditional (secondary Hopf) stability
limit be leveraged to achieve higher material removal rates, while
still satisfying part accuracy and surface finish requirements?
Based on the simulation and experimental results, the practical
answer is, yes, period-n conditions may be selected at axial depths

of cut that exceed the secondary Hopf stability limit. The primary
considerations for implementing this strategy are summarized.

� The SLE can be minimized by appropriate selection of spin-
dle speed.

� The user must be willing to sacrifice surface quality due to
the subharmonic (periodic) nature of the relative vibration
between the cutting tool and workpiece. For this reason, the
primary application may be roughing operations, where low
surface roughness is not a primary requirement, which pre-
cede finishing operations under stable cutting conditions.

� Due to the sensitivity to natural frequency, this approach is
best suited to situations where the workpiece is “rigid” rela-
tive to the cutting tool. Because the tool point dynamic
response should remain constant throughout the cut for a
selected spindle speed, consistent behavior should be
achieved.

Based on these observations, the authors believe that it is possi-
ble for period-n behavior to be integrated in new milling process
planning strategies that exploit the potential for increased material
removal rates. Follow-on research to support this effort may focus
on efficient techniques for presenting the global stability behavior
in a map that incorporates both: (1) secondary Hopf and period-n
bifurcation zones; and (2) surface location error. Additionally, the
sensitivity of the period-n behavior to model input uncertainties
can be quantified.
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