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Abstract A naïve Bayes classifier method for tool condition
monitoring is described. End-milling tests were performed at
different spindle speeds and the cutting force was measured
using a table-mounted dynamometer. The effect of tool wear
on force features in the time and frequency domains was
evaluated and used for training the classifier. The amount of
tool wear was predicted using the naïve Bayes classifier
method. Two cases are presented. First, the tool wear is
divided into discrete states based on the amount of flank wear
and the probability of the tool wear being in any state is
updated using force data. Second, a continuous case is con-
sidered and the probability density function of the tool flank
wear width is updated. The results are discussed.

Keywords Tool conditionmonitoring . Naïve Bayes
classifier . Flank wear . Uncertainty . Cutting force

1 Introduction

Tool wear is an important limitation to machining productiv-
ity. Tool wear or breakages can result in unscheduled machine
downtime in an industrial production environment, poor qual-
ity, or scrapping of the part resulting in a significant economic
loss. The loss in productivity can be minimized by changing

tools frequently; however, this results in an increase in tooling
costs. It has been reported that only 50–80 % of the expected
tool life is typically used [1]. Estimates state that the amount of
downtime due to cutter breakage on an average machine tool
is on the order of 7–20 % [2, 3]. Therefore, an intelligent and
robust tool condition monitoring system is desirable; an accu-
rate tool condition monitoring systemmay result in increase in
spindle speed by 10–50 %, a reduction in downtime resulting
in a 10–40 % reduction in machining cost [4].

A tool condition monitoring system is generally composed
of three parts: 1) identifying and extracting relevant features
correlated to tool wear; 2) training the system using tool wear
experiments; and 3) developing an intelligent inference tech-
nique for predicting tool wear [5, 6]. A variety of methods for
inferring the tool condition have been discussed in the litera-
ture, including neural networks [7–11], fuzzy logic [12–14],
neuro-fuzzy networks [15–18], Bayesian networks [19], and
Hidden Markov models (HMM) [20–23]. A wide range of
measurement and sensory feature extraction techniques have
also been demonstrated, where measurements of acoustic
signals, vibration, temperature, force, and power are analyzed
using time and frequency domain signal processing tools.
However, there are several challenges to the implementation
of existing methods in the literature. First, tool condition
monitoring systems which rely on mathematical models gen-
erally requires a significant amount of empirical data and,
therefore, are challenging to apply in industrial applications
[5]. Second, another important limitation to tool condition
monitoring is the stochastic nature of the sensor signal due
to large-scale variation and non-homogeneities in the work-
piece [24]. Therefore, a fusion of multi-sensor data is neces-
sary for a robust system which incorporates the underlying
uncertainties in the sensor signals. Third, it is desired that the
monitoring system be computationally efficient to be useful in
real time. To address these challenges, the authors propose a
naïve Bayes’ classifier for tool condition monitoring.
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A naïve Bayes classifier is an efficient and effective
algorithm for machine learning and data mining [25–27].
The naïve Bayes classifier has several advantages over
alternative classification schemes such as neural net-
works or fuzzy logic. First, naïve Bayes classifier is
computationally efficient because of the independence
assumption; the need to calculate covariances between
different sensor features is eliminated, and each feature
can be estimated using a one-dimensional distribution.
The theoretical background and the conditions for the
efficacy of naïve Bayes have been presented in [21].
Second, the classifier requires a small amount of train-
ing data and incorporates the inherent uncertainty in the
sensor signals. Third, the naïve Bayes is an attractive
solution for multi-sensor fusion in tool condition moni-
toring. In spite of the advantages, the naïve Bayes
approach has not yet been considered in the literature
for tool condition monitoring. The main contribution of
the paper is to demonstrate the methodology and the
efficacy of the naïve Bayes for tool condition monitor-
ing using discrete and continuous data.

In this paper, the application of the naïve Bayes clas-
sifier to tool condition monitoring using end-milling
force data measured by a table-mounted cutting force
dynamometer is demonstrated. Both discrete and contin-
uous cases are presented. Two force data features are
considered, the time domain mean cutting force and the
sum of the frequency domain amplitudes at the tooth
passing frequency and its harmonics. However, the meth-
od described here can also be applied to other sensor
signals, such as power, acoustic emission, and vibration.
The remainder of the paper is organized as follows.
Section 2 introduces the naïve Bayes classifier and the
corresponding assumptions. Section 3 develops the clas-
sifier for a tool condition monitoring system. Section 4
describes the training experiments and tool wear results.
Sections 5 and 6 describe the discrete and continuous
cases, respectively. A discussion on the results and the
method is presented in Section 7 followed by conclu-
sions in Section 8.

2 Naïve Bayes classifiers

Bayes’ rule provides a framework for incorporating judgment
(prior beliefs) with observational data. Let the prior distribu-
tion about an uncertain event, A, be P(A), the likelihood of
obtaining an experimental result B given that event A occurred
be P(B|A), and the probability of observing experimental
result B (without knowing A has occurred) be P(B). Bayes’
rule is used to determine the posterior belief about event A
after observing the experiment results, P(A|B), as shown in
Eq. 1. Using Bayes’ rule, information gained through

observations can be combined with the prior prediction about
the event to obtain a posterior distribution, which represents
the updated belief.

P A
���B

� �
¼

P B
���A

� �
P Að Þ

P Bð Þ ð1Þ

For n experimental results,B1, B2,….. Bn, Bayes’ rule from
Eq. (1) is expressed as shown in Eq. 2.

P A
���B1;B2;…:Bn

� �
¼

P B1;B2;…:Bn

���A
� �

P Að Þ
P B1;B2;…:Bnð Þ ð2Þ

The numerator of Eq. 2 is a joint probability of P(A,B1,B2,
….Bn) which can be written from the rules of conditional
probability as shown in Eq. 3.

P A;B1;B2;…:Bnð Þ ¼ P Að ÞP B1;B2;…:Bn

���A
� �

¼ P Að ÞP B1

���A
� �

P B2;…:Bn

���A;B1

� �

¼ P Að ÞP B1

���A
� �

P B2

���A;B1

� �
P B3;…:Bn

���A;B1;B2

� �

¼ P Að ÞP B1

���A
� �

P B2

���A;B1

� �
P B3

���A;B1;B2

� �

…:P Bn

���A;B1;B2…:;Bn−1

� �

ð3Þ

Note that for a large value of n, the joint probability P(A,
B1,B2,….Bn) is difficult to compute. The naïve assumption
states conditional independence, i.e., each experimental result
is independent of the other; see Eq. 4.

P Bi

���A;Bj

� �
¼ P Bi

���A
� �

1≤ i; j ≤ n; i ≠ j ð4Þ

The assumption of conditional independence simplifies
Eq. 3 to be

P A;B1;B2;…:Bnð Þ

¼ P Að ÞP B1

���A
� �

P B2

���A
� �

P B3

���A
� �

…:P Bn

���A
� �

ð5Þ

Using the (naïve) conditional independence assumption,
Bayes’ rule shown in Eq. 2 can be written as

P A
���B1;B2;…:Bn

� �
∝P Að ÞP B1

���A
� �

P B2

���A
� �

P B3

���A
� �

…:P Bn

���A
� �

:

ð6Þ

Note that the denominator in Eq. 2 is a normalizing con-
stant and is not shown in Eq. 6.
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3 Naïve Bayes classifier for tool condition monitoring

In tool condition monitoring, the uncertain variable of interest
is the state of tool wear, TW. The experimental observations
are the sensor features, F. For tool wear monitoring, Bayes’
equation with the naïve assumption is given as

P TW
���F1; F2;…:Fn

� �
∝P TWð ÞP F1

���TW
� �

P F2

���TW
� �

P F3

���TW
� �

…:P Fn

���TW
� �

∝P TWð Þ∏
1

n

P Fi

���TW
� �

;

ð7Þ

where P(TW|F1,F2,….Fn) is the posterior probability distri-
bution of tool wear given sensor features, P(TW) is the prior
probability distribution of tool wear and P(Fi|TW) is the like-
lihood of observing the sensor feature values given the tool
wear state. The value of the likelihood terms is not known and
can be determined from training experiments. Again, using
Bayes’ rule:

P Fi

���TW
� �

∝P Fið ÞP TW
���Fi

� �
; ð8Þ

where P(Fi|TW) is now the posterior probability distribution of
sensor feature given tool wear (note that in Eq. 8, it is now the
posterior that needs to be determined from the training exper-
iment), P(Fi) is the prior probability distribution of the sensor
feature and P(TW|Fi) is the likelihood of observing the tool
wear state given a sensor feature. The value of P(TW|F)i is
known in training experiments since the state of tool wear
(e.g., flank wear width) is also measured along with the sensor
feature values. Note that in Eqs. 7 and 8 the normalizing
constant is not shown. The procedure for tool condition mon-
itoring using naïve Bayes classifiers is now described. First,
training experiments are performed in which the tool wear is
measured at regular intervals along with the sensor features (in
this case, force metrics in the time and frequency domain).
Second, the experimental training data is used to determine the
values of P(Fi|TW) using Eq. 8 since the tool wear state is
known in the training experiments. Third, the values of
P(Fi|TW) are used in Eq. 7 for inference of the tool wear state
given sensor features.

The remainder of the paper is organized as follows.
Section 4 describes the training experiments and results.
Section 5 shows a discrete case, where tool wear is divided
into discrete states based on the value of flank wear width
(FWW). The probability of the tool being in any state is
updated using sensor values. Section 6 uses a continuous
method where the probability density function (pdf) of the
tool’s FWW is updated using the sensor results. Conclusions
are presented in Section 8.

4 Training experiments

The experimental steps followed to collect the tool wear data
for a 19-mm diameter inserted endmill (one square uncoated
Kennametal 107888126 C9 JC carbide insert; zero rake and
helix angles, 15-deg relief angle, 9.53-mm square, 3.18-mm
thick) are described in this section. The workpiece material
was 1018 steel. Three tests were completed at a spindle speed,
Ω, of 2500 rpm with a 3-mm axial depth of cut and 4.75-mm
radial depth of cut (25% radial immersion). The feed per tooth
value was 0.06 mm/tooth. The cutting forces were monitored
using a table-mounted force dynamometer (Kistler 9257B).
The insert wear profile was also recorded at regular intervals.
To avoid removing the insert/tool from the spindle, a handheld
digital microscope (×60magnification) was fixtured inside the
machine enclosure and was used tomeasure the rake and flank
surfaces. The calibrated digital images were used to identify
the FWW (no crater wear was observed). Figure 1 shows the
dynamometer/workpiece (left) and microscope for intermit-
tent FWWmeasurement (right). Figure 2 shows the increase in
maximum FWW with cutting time for the three tests per-
formed at 2500 rpm. Additionally, three tests were carried
out at additional spindle speeds of 5000 and 7500 rpm. The
procedure and parameters (other than spindle speed) were the
same as described for the 2500 rpm experiments. The results
are shown in Fig. 3; clearly, tool wear depends on spindle
speed (surface speed).

Fig. 1 Dynamometer/workpiece (top) and microscope for in process
measurement of FWW (bottom)
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The forces in the x and y directions (x is the feed
direction, y is perpendicular to x within the plane of the
cut) were measured at the same intervals as tool wear.
Force metrics in the time and frequency domains were
evaluated. The mean force, Fm, in the time domain and
the sum of magnitudes of the tooth passing frequency
and its first five harmonics, Stpf, in the frequency do-
main were found to be most sensitive to tool wear. The
selection of Fm and Stpf was based on the R2 value of
the linear fit on the trends shown by the metrics as a
function of FWW. To illustrate, the R2 value for Fm and
Stpf was 0.55 and 0.72, respectively. For brevity, the
graphs of additional metrics are not included in the
manuscript.

Figure 4 shows the variation in mean forces as a function of
FWW at different spindle speeds. Figure 5 shows the sum of
the magnitudes of content at the tooth passing frequency and
its harmonics in the frequency domain as a function of FWW.
Although the mean forces and the sum of magnitudes of tooth

passing frequency/harmonics show an increase with
FWW, there is no clear dependence on spindle speed.
Therefore, the dependence on spindle speed was not
considered since no clear trend was observed. Figure 6
shows the values of Fm (left) and Stpf (right), expressed
as percent of the nominal value (measured during the
first cut), denoted as Fm%

, and Stp f % , respectively. The
primary reason for expressing the values as percent of
the nominal was to reduce the uncertainty when the tool
is new.

5 Tool condition monitoring using Bayes classifier
(discrete case)

In this section, tool condition monitoring using a discrete
Bayes classifier is described. Table 1 lists the discrete states
of tool wear. The sensor features, Fm and Stpf, were also

Fig. 2 Growth in FWW with machining time at 2500 rpm

Fig. 3 Growth in FWW with machining time at 2500, 5000, and
7500 rpm

Fig. 4 Growth in mean force with FWW at spindle speeds, 2500, 5000,
and 7500 rpm

Fig. 5 Growth in sum of magnitude of tooth passing frequencies with
FWW at spindle speeds, 2500, 5000, and 7500 rpm
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discretized and divided into five levels; see Table 2. The states
for tool wear, Fm, and Stpf, are denoted as TWS, FmS , and Stp f S
, respectively. The subscript S represents the discrete states of
the variables. As seen from Table 2, the states for sensor
features are divided into five levels. In general, the numbers
of levels and states should be chosen such that representation
of tool wear states in each sensor level and the corresponding
uncertainties is incorporated.

5.1 Conditional probabilities using Bayes’ rule

The Fm%
and Stp f % values from the tool wear experiments

were used to determine the conditional probabilities between
the two force metrics and tool wear. Note that there is uncer-
tainty in the values of Fm%

and Stp f % as a function of FWW;
see the spread of potential force metric values at a given FWW
in Fig. 6. The conditional probabilities were determined using
the learning experiments (described in Section 4.0) and
Bayes’ rule (Eq. 8). For sensor features states FmS , and
Stp f S , and tool wear states, TWS, Eq. 8 is written as

P FmS

���TWS

� �
∝P FmSð ÞP TWS

���FmS

� �
ð9Þ

P Stp f S

���TWS

� �
∝P Stp f S

� �
P TWS

��� Stp f S
� �

ð10Þ

As noted, the sensor features and tool wear were divided
into discrete states. A Dirichlet-multinomial distribution con-
jugate pair was used for Bayes updating. For a Dirichlet-
multinomial conjugate pair, the prior and the posterior are a
distributed Dirichlet [28]. A Dirichlet distribution is charac-
terized by the parameter, α, which defines the shape of the
distribution. Note that a discrete Dirichlet distribution was
used in this case. The Dirichlet distribution was a five-
dimensional joint distribution because the force metrics were
divided into five states. For a discrete Dirichlet, each state has
a corresponding value of α. To illustrate, Fig. 7 shows the
Dirichlet distribution for three states using different values of
α. If the value of α is equal for all states, the distribution is
uniform. However, note that both a Dirichlet{1,1,1} distribu-
tion and a Dirichlet{10,10,10} distribution represent beliefs
where each state is equally likely. The former represents a
belief where all states are assumed equally likely because no
information is available otherwise, while the latter represents a
belief where significant information is available which makes
each state equally likely a priori. The probability of each state
is the expected value of the state from the joint distribution
which is obtained by normalizing the parameters to unity.

For the prior Dirichlet distribution of the force states, α has
five values, one for each state. As noted, Dirichlet-

Fig 6 Fm and Stpf expressed as a percent of the nominal value, denoted by
Fm%

(top) and Stp f % (bottom), respectively

Table 1 Discrete states for tool wear

State (TWS) Condition FWW (mm)

1 New ≤ 0.1

2 Mildly worn > 0.1 and ≤0.3
3 Worn > 0.3

Table 2 Discrete states for Fm and Stpf, denoted by FmS and Stp f S ,
respectively

State (FmS , Stp f S ) Fm%
Stp f %

1 < 112 < 112

2 > 112 and ≤124 > 112 and ≤124
3 > 124 and ≤136 > 124 and ≤136
4 > 136 and ≤148 > 136 and ≤148
5 > 148 > 148
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multinomial distributions form a conjugate pair. The posterior
Dirichlet parameters are equal to the addition of the prior
Dirichlet parameters for each state and the number of obser-
vations in that state. To illustrate, let the prior, P FmSð Þ be
defined as Dirichlet{1, 1, 1, 1, 1}. The probability of each
state is the expected value of the state from the joint five-
dimensional distribution, which is obtained by normalizing
the parameters to unity. Thus, the prior probability of each
state is 0.2. Assume that five experimental measurements at a
new tool condition (TWS=1) were performed and the FmS

measured values were in states {1, 2, 1, 2, and 3}.
Therefore, the number of observations in each state is {2, 2,
1, 0, and 0}. The posterior distribution P FmS jTWSð Þ is given
by Dirichlet {3, 3, 2, 1, 1}. The posterior probabilities of the
five states are {0.3, 0.3, 0.2, 0.1, 0.1}.

The prior distributions of FmS and Stp f S were taken as a
uniform Dirichlet{1, 1, 1, 1, 1}. As no prior information was
available, the alpha values were assumed to be 1 for all states.
The prior expected probability for each state is 0.2. The
updating was performed using the experimental results and
the Dirichlet-multinomial conjugate distribution. To illustrate,
assume the number of observations for a new tool (TWS=1) in
each sensor state are {19, 3, 0, 0, and 0} and {20, 2, 0, 0, and
0} for FmS and Stp f S , respectively. The parameters of the
posterior distribution of FmS and Stp f S given TWS=1 are then
Dirichlet{20, 4, 1, 1, 1} and Dirichlet{21, 3, 1, 1, 1}, respec-
tively. The posterior expected probabilities for each state of
FmS and Stp f S , given TWS=1, are shown in Fig. 8. The same
procedure is followed to determine the expected probability
for FmS and Stp f S states at all TWS states. The conditional

probabilities for FmS and Stp f S are listed in Table 3 and
Table 4, respectively. The posterior probabilities of the sensor
states describe how likely it is that each sensor state will be
observed given the tool wear state. To illustrate, given
TWS=1, it is very likely that FmS =1 and Stp f S =1, whereas it
is less likely that FmS =5 and Stp f S =5. In general, the force
metrics should be discretized to ensure some states are more
likely than others for a given tool wear state.

5.2 Tool wear predictions using naïve Bayes’ classifier

In Section 5.1, the likelihood of each force state given the tool
wear state was calculated using Bayes’ rule. The likelihood
can then be used to determine the posterior probability of tool
wear state given the force states; see Eq. 7. Additional tool
wear testing was completed at 3750 rpm. Figure 9 shows the
values of Fm%

(left) and Stp f % (right) as a function of FWW.
The values are expressed as a percent of the nominal. The
procedure for the tests was the same as described in Section 4.
The FWW was measured at regular intervals along with the
values of Fm%

and Stp f % . The values of Fm%
and Stp f % were

converted to states, defined in Table 2, and used to calculate
the probability of tool wear state using Eq. 7, which was
compared to the true measured FWW value.

The prior probabilities of TWS were selected as {0.33, 0.33,
0.33}; it was assumed that the tool is equally likely to be in any
state. The updating procedure required the following steps.
The first measurement values were FmS =1 and Stp f S =1.
The first column of Table 3 and Table 4 gives the likelihood

Fig. 7 Three-dimensional
Dirichlet distribution forα{1,1,1}
(top left),α{10,10,10} (top right),
α{10,10,2} (bottom left), and
α{10,2,10} (bottom right)
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of FmS =1 and Stp f S =1, given the tool wear states, respec-
tively. The posterior probabilities of tool wear states were
given by the product of the prior and the likelihoods of the
sensor states normalized so that the sum is equal to unity. The
calculations are summarized in Table 5. The posterior proba-
bilities after the first update become the prior probabilities for
the next and so on. Table 6 lists the measured sensor states and
the posterior probabilities for each tool wear state. Note that the

posterior probabilities are rounded to two significant digits.
The maximum probability, or the most likely tool wear state, is
shown in bold. Figure 9 displays the predicted posterior prob-
abilities of the tool wear states as a function of true FWW. As
shown in Fig. 9 and Table 6, good agreement between the
predicted tool wear state and measured FWW was obtained. It
can be seen from Table 6 that the tool wear state was correctly
identified in 11 of the 13 tests. For tests 5 and 6, the tool wear
state was underestimated.

Fig. 8 Posterior probabilities for FmS (top) and Stp f S (bottom) given
that the tool is new (TWS=1)

Table 3 Posterior probabilities for FmS given tool wear states,
P(FmS |TWS)

FmS =1 FmS =2 FmS =3 FmS =4 FmS =5

TWS=1 0.74 0.15 0.037 0.037 0.036

TWS=2 0.08 0.56 0.08 0.10 0.18

TWS=3 0.01 0.06 0.21 0.13 0.59

Table 4 Posterior probabilities for Stp f S given tool wear states
P(Stp f S ; TWS )

Stp f S =1 Stp f S =2 Stp f S =3 Stp f S =4 Stp f S =5

TWS=1 0.78 0.11 0.037 0.037 0.036

TWS=2 0.21 0.56 0.15 0.05 0.03

TWS=3 0.03 0.16 0.22 0.24 0.35

Fig. 9 Fm%
(top) and Stp f % (bottom) as a function of FWW at 3750 rpm
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Additional tests were completed at 6250 rpm.
Figure 11 shows the values of FmS (left) and Stp f S
(right) as a function of FWW at 6250 rpm. The posterior
probabilities were calculated using the same procedure
described previously. Table 7 shows the measured states
of FmS and Stp f S and posterior probabilities for tool
wear states and the true FWW at 6250 rpm. Figure 12
shows the posterior probabilities of tool wear states as a
function of true FWW at 6250 rpm.

6 Tool condition monitoring using Bayes classifier
(continuous case)

In Section 5, tool wear predictions using Bayes classifiers were
described for a discrete case. The tool condition was divided
into three discrete states using the FWW and the probability of
the tool being in each state was updated using force metrics.
This section describes a continuous case where the probability
of toolFWW is updated using the same force metrics. The Fm%

and Stp f % values from the tool wear experiments described in
Section 4.0 were used to learn the network, or to determine the
conditional probabilities between the force metrics and tool
wear; see Eqs. 9 and 10.

6.1 Conditional probabilities using Bayes’ rule

The conditional probabilities, P Fm%
jTW� �

and P

Stp f % jTW
� �

, were determined using an ordinary Bayesian
linear regression. For a continuous variable, TW is character-
ized by FWW. The observation errors were assumed to be
independent with equal variance. The linear regression model
was developed as

Fm% ¼ β1 þ β2FWW þ ϵ ð11Þ

Stp f % ¼ β3 þ β4FWW þ ϵ ð12Þ

The posterior distribution for Fm%
and Stp f % are given by

[29]:

Fm%

���FWW e N β1 þ β2FWW ; σ2
Fm%

I
� �

ð13Þ

Stp f %

���FWW e N β3 þ β4FWW ;σ2
Stp f%

I
� �

ð14Þ

where N denotes a normal distribution, β1, β2, β3, and β4
are ordinary linear least squares values (intercept and slope),
and σ2

Fm%
and σ2

Stp f%
are the standard deviations in the

measured Fm%
and Stp f % values, respectively. ε is defined

as the errors in the regression which are random and normally
distributed. Linear least squares fitting was applied to the
measured Fm%

values and β1 and β2 were calculated as
100.1 % and 124.2 %/mm, respectively. Similarly, β3 and β4
were calculated by a linear least squares fit to the Stp f % values;

they were 101 % and 75.8 %/mm. The values of σ2
Fm%

and

Fig. 10 Posterior probabilities of tool wear states as a function of true
FWW at 3750 rpm

Table 5 Posterior probabilities of TWS given FmS =1 and Stp f S =1
(calculated using Eq. 7)

Prior Likelihood
(FmS =1)

Likelihood
(Stp f S =1)

Posterior
(non-normalized)

Posterior
(normalized)

TWS=1 0.33 0.74 0.78 0.190 0.971

TWS=2 0.33 0.08 0.21 0.005 0.028

TWS=3 0.33 0.01 0.02 6.6×10−5 3.37×10−4

Table 6 Measured states of FmS and Stp f S and posterior probabilities
for tool wear states and the true FWW at 3750 rpm

Test No. FmS Stp f S TWS=1 TWS=2 TWS=3 True FWW

1 1 1 0.97 0.03 0.00 0.04

2 1 1 1.00 0.00 0.00 0.05

3 2 1 1.00 0.00 0.00 0.06

4 2 2 0.99 0.01 0.00 0.09

5 3 3 0.89 0.11 0.00 0.11

6 3 4 0.73 0.27 0.00 0.13

7 4 4 0.42 0.58 0.00 0.17

8 4 4 0.16 0.84 0.00 0.19

9 4 5 0.09 0.90 0.01 0.22

10 5 5 0.02 0.68 0.30 0.28

11 5 5 0.00 0.05 0.95 0.37

12 5 5 0.00 0.00 1.00 0.45

13 5 5 0.00 0.00 1.00 0.51

The maximum probability values are showed in italics which denote the
most likely tool wear state

1620 Int J Adv Manuf Technol (2015) 77:1613–1626



σ2
Stp f%

were calculated from ordinary least squares analysis to

be 20.15 and 8.36 %, respectively [29]. The distribution of
Fm%

and Stp f % as a function of FWW was calculated using

Eqs. 13 and 14. Figures 13 and 14 show the conditional
probabilities for the senor values, P Fm%

jFWW
� �

and P

Stp f % jFWW
� �

, respectively. The gray-scale color bar de-
notes the probability density. The measured values are denot-
ed by “x”.

6.2 Tool wear predictions using naïve Bayes’ classifier

In Section 6.1, the likelihood of each sensor given FWW was
calculated using ordinary Bayesian linear regression. The
likelihood was used to determine the posterior probability of
FWW given the sensor states; see Eq. 7. Tool wear tests were
completed at 3750 rpm. Figure 9 shows the values of Fm%

(left) and Stp f % (right) as a function of FWWat 3750 rpm. The
procedure for the tests was the same as described in Section 4.
The FWW was measured at regular intervals along with the
values of Fm%

and Stp f % . The values of Fm%
and Stp f % were

Fig. 11 Fm%
(top) and Stp f % (bottom) as a function of FWW at

6250 rpm

Table 7 Measured states of FmS and Stp f S and posterior probabilities
for tool wear states and the true FWW at 6250 rpm

Test no. FmS Stp f S TWS=1 TWS=2 TWS=3 True FWW

1 1 1 0.97 0.03 0.00 0.05

2 2 1 0.97 0.03 0.00 0.15

3 3 2 0.78 0.22 0.00 0.21

4 4 2 0.20 0.80 0.00 0.25

5 5 5 0.07 0.93 0.00 0.32

6 5 5 0.02 0.79 0.19 0.38

7 5 5 0.00 0.09 0.91 0.44

8 5 5 0.00 0.00 1.0 0.51

The maximum probability values are showed in italics which denote the
most likely tool wear state

Fig. 12 Posterior probabilities of tool wear states as a function of true
FWW at 6250 rpm

Fig. 13 Conditional probabilities, P Fm%
jFWW

� �
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used to calculate the posterior pdf of FWW using Eq. 7, which
was compared to the true FWW value.

The prior probability of FWW was assumed to be uniform
between 0 to 1 mm. The updating procedure is as follows.
Consider a measurement of Fm%

=110.0% and Stp f % =110%.
The likelihood function gives how likely the measured sensor
value is givenFWW. The likelihood is given by the value of the
probability density at the measured sensor value; see Figs. 13
and 14. Figure 15 shows the likelihood function for Fm%

=
110.0 % (left) and Stp f % =110.0 % (right). Figure 15 shows
that the Fm%

=110.0 % value is most likely for a FWW of
0.08 mm, whereas Stp f % =110 % is most likely for FW=
0.12 mm. On the other hand, the measured values of Fm%

=
110.0 % and Stp f % =110.0 % are unlikely for FWW >0.4 mm.
Figure 16 shows the likelihood function for Fm%

=150.0 %
(left) and Stp f % =150.0 % (right). The most likely values of
FWW for Fm%

=150.0 % and Stp f % =150.0 % are 0.4 and

Fig. 14 Conditional probabilities, P Stp f % jFWW
� �

Fig. 15 Likelihood functions for Fm%
=110.0% (top) and Stp f % =110%

(bottom)
Fig. 16 Likelihood functions for Fm%

=150.0 % (top) and Stp f % =
150 % (bottom)
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0.65 mm, respectively. The posterior distribution is the product
of the prior and the likelihood; see Eq. 7. The posterior distri-
bution is normalized so that the area under the curve is equal to
unity. The posterior after the first update becomes the prior for
the second update and so on.

Table 8 shows the measured Fm%
and Stp f % values at

3750 rpm and the true FWW. Thirteen measurements were
performed until the FWW reached 0.51 mm (see Table 6).
Figure 17 shows the posterior pdf after a single update (top

left), five updates (top right), nine updates (bottom left), and
13 updates (bottom right). The true FWW values are also
shown, denoted by “x”. Figure 18 shows the posterior prob-
ability of FWWafter each update using sensor values. The true
FWW values are denoted by “x”. The gray-scale color bar
denotes the probability density. Results show good agreement
between the predicted and the true FWW. The probability of
FWWexceeding the limiting FWW can be set as the criteria for
detecting a worn tool.

Additional testing was completed at 6250 rpm. The poste-
rior pdf of FWW was calculated using the same procedure
described previously. Table 9 shows the measured Fm%

and
Stp f % values at 6250 rpm and the true FWW. Figure 19 shows
the posterior probability of FWW after each update using
sensor values. The gray-scale color bar denotes the probability
density. The true FWW values are also shown (denoted by
“x”).

7 Discussion

A Bayesian classifier method for tool wear prediction was
shown. The classifier method is an efficient method for infer-
ence about tool wear under uncertainty. This section presents
some considerations in applying the method for tool condition
monitoring. First, the prediction accuracy of the method

Table 8 Measured Fm%
and Stp f % values at 3750 rpm and the true

FWW

Test no. Fm%
Stp f % True FWW (mm)

1 100.0 100.0 0.04

2 106.0 105.8 0.05

3 114.5 110.4 0.06

4 123.5 120.0 0.09

5 125.8 128.8 0.11

6 130.4 136.5 0.13

7 138.4 140.8 0.17

8 137.2 144.4 0.19

9 142.7 150.6 0.22

10 173.3 148.8 0.28

11 181.0 173.0 0.37

12 177.8 176.4 0.45

13 190.0 181.2 0.51

Fig. 17 Posterior pdf of FWW
after one update (top left), five
updates (top right), nine updates
(bottom left), and 13 updates
(bottom right). The true FWW is
denoted by “x”

Int J Adv Manuf Technol (2015) 77:1613–1626 1623



depends on the amount of training data and the extent of
confirmation of the prediction data with the training data set.
To illustrate, Fig. 6 shows the training data set using three tests
each at 2500, 5000, and 7500 rpm for the prediction of tool
wear. Figures 9 and 11 show the prediction data sets at 3750
and 6250 rpm, respectively. Figure 20 shows the comparison
of Fm%

at 3750 (left) and 6250 rpm (right), respectively, with
the training data set. The training data is denoted as “x” and
prediction as “o”. As shown in Fig. 20, the prediction data set
agrees with the training data set, and therefore, the tool wear
predictions are good. However, note that there still exists
uncertainty in the tool wear and the values of the sensor
signals as calculated in the likelihood functions. The classifier
method allows for inference using the training data set.
Subsequent prediction data can be incorporated in the training
data set. Second, the prediction depends on the number of
training experiments and number of sensor metrics. Future
work will focus on optimizing the number of training exper-
iments and sensor metrics. As noted, the likelihood function
can be used as a criterion for selecting suitable sensor metrics.
In addition, the dependence on machining parameters such as

Fig. 18 Posterior FWW probability after each update at 3750 rpm

Table 9 Measured Fm%
and Stp f % values at 6250 rpm and the true

FWW

Test no. Fm%
Stp f % True FWW (mm)

1 100.0 100.0 0.05

2 116.1 110.5 0.15

3 129.0 115.5 0.21

4 141.2 123.6 0.25

5 155.3 150.2 0.32

6 157.4 166.5 0.38

7 197.5 186.2 0.44

8 234.9 186.5 0.51

Fig. 19 Posterior FWW probability after each update at 6250 rpm

Fig. 20 Comparison of the training and prediction data set for Fm%
at

3750 rpm (top) and 6250 rpm (bottom)
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spindle speed can be easily incorporated by modifying Eq. 7
as

P TW
���F1; F2;…:Fn;

� �
∝P TW

���
� �

∏
1

n

P Fi

���TW ;
� �

ð15Þ

Equation 15 incorporates dependence on spindle speed by
defining the terms in the equation conditional on the spindle
speed. This implies that the likelihood (and the prior) is
conditioned on the spindle speed and used for tool life predic-
tion at the corresponding speed. The advantage of the classi-
fier method is that it allows multiple sensor fusion for accurate
tool wear predictions. In addition, the method is computation-
ally insensitive to the number of sensor metrics. The user can
decide a threshold probability of tool flank wear width ex-
ceeding the critical value (such as 0.3 mm) based on the
application and user risk preference. For example, the thresh-
old probability will be lower for machining an expensive
forging as compared to a roughing operation.

8 Conclusions

A naïve Bayes classifier method for tool condition monitoring
for both discrete and continuous case was described. The
influence of tool wear on the mean force in the time domain
and the sum of magnitudes for the tooth passing frequency
and its harmonics in the frequency domain were used to train
the classifier. In the discrete case, tool wear was divided into
discrete states based on the flank wear width, and the proba-
bility of the tool wear being in any state is updated using force
data. In the continuous case, the probability of the tool flank
wear width is updated. The naïve Bayes classifier offers many
advantages for tool condition monitoring. The method can be
applied to multiple sensor signals, including power, acoustic
emission, and vibration without loss of generality. The naïve
assumption makes the method computationally inexpensive.
To illustrate, using Intel i5 processor with a 4GB RAM on
Windows 7, a single computation of posterior probability
requires 0.5 ms. This is a result of the computation consisting
of a multiplication and normalization. The number of training
experiments can be optimized based on the likelihood values
calculated. In addition, suitable sensor metrics can also be
decided based on the likelihood uncertainty.
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