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INTRODUCTION 
Heterodyne displacement measuring 
interferometry provides important metrology for 
applications requiring high resolution and 
accuracy, such as in the semiconductor 
manufacturing industry and for linear stage 
calibration. Heterodyne Michelson 
interferometers use a two-frequency laser 
source and separate the two optical frequencies 
into one fixed length and one variable length 
path via polarization. Ideally these two beams 
are linearly polarized and orthogonal so that only 
one frequency is directed toward each path. An 
interference signal is obtained by recombining 
the light from the two paths; this results in a 
measurement signal at the heterodyne (split) 
frequency of the laser source. This 
measurement signal is compared to the optical 
reference signal. Motion in the measurement 
arm causes a Doppler shift of the heterodyne 
frequency which is measured as a continuous 
phase shift that is proportional to displacement. 
In practice, due to misalignment of optical 
components, component imperfections, and 
elliptical polarization, undesirable frequency 
mixing occurs which yields periodic errors [1-3]. 
Typically, 1st, 2nd and even higher order periodic 
errors occur, which correspond to the number of 
periods per fringe displaced, as shown in 
Figure 1. A displacement fringe corresponds to 
the wavelength divided by the interferometer fold 
factor which is determined by the interferometer 
setup. Ultimately, this error can limit the 
accuracy to approximately the nanometer level. 
 
Many studies have investigated the 
measurement and compensation of periodic 
error, including frequency domain [4] and time 
domain approaches [5, 6]. For frequency domain 
approach, the periodic error can be measured 
by calculating the Fourier transform of the time 
domain data collected during constant velocity 

target displacement. However, this method is 
not well suited to non-constant velocity profile 
and sub-fringe positioning ranges. An alternate 
digital algorithm which can be applied in real-
time for constant or non-constant velocity 
motions is also available for measuring and 
compensating 1st and 2nd order periodic error. 
But this method leaves 3rd and higher order 
periodic errors as residual errors. 
 
In this research, a real-time continuous wavelet 
transform (CWT) based algorithm, which was 
developed in previous work [7], is improved and 
used to compensate 1st, 2nd and higher order 
periodic errors (modeled as pure sine signals). 
Moreover this algorithm can compensate errors 
in both constant and non-constant velocity 
motions. 
 

 
FIGURE 1. Example of 1st, 2nd, and 3rd order 
periodic error as a function of fringes. Typically, 
1st order error has a larger magnitude than 
higher order errors.  
 
CONTINUOUS WAVELET TRANSFORM 
The wavelet transform can be used to analyze 
time series data that contains non-stationary 
(variable period) power at multiple frequencies 
[8]. Wavelet functions refer to either orthogonal 
or non-orthogonal wavelets. The choice of the 
appropriate wavelet transform (continuous or 
discrete) and wavelet function is based on 



whether the purpose of data analysis is 
detection or compression [9]. 
 
A wavelet function ( )tψ  is a finite energy 
function [10] with an average of zero, 
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A wavelet family is generated by dilating the 
mother wavelet via the scale 0s >  and 
translating it via the location u∈ℜ . This series 
of wavelets can be expressed as 
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In this research, a continuous wavelet transform 
(CWT) is used to analyze the signal x(t), with a 

wavelet function ( )tψ . For a one-dimensional 

signal x(t), the CWT is defined as the 
convolution of x(t) with a scaled and translated 

version of ( )tψ  via 
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where ( )* tψ  is the wavelet function, s is the 
scale, and u is the location. In the present work, 
the complex Morlet wavelet is used as the 
mother wavelet 
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In practice, Equation 3 must be converted from 
continuous to discrete:  
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where x(n) is the nth discrete data point, *ψ  
is the mother wavelet, M is the number of total 
data points in the signal, and t∆  is the sampling 
time.  
 
After applying the complex Morlet wavelet to the 
signal, the CWT result is a two-dimensional 
complex array. This array can be used to extract 
the CWT “ridge” and, therefore, the phase of the 
periodic errors. The ridge is the location where 
the CWT coefficient reaches its local maximum 

along the scale direction [11]; the coefficient is 
maximum when the analysis frequency equals 
the signal frequency [12]. The ridge and phase 
are 
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where ridges  is the scale at the ridge, and 𝐼𝐼𝐼𝐼 
and 𝑅𝑅𝑅𝑅 represent the imaginary and real parts of 
the CWT coefficient, respectively. 
 
COMPENSATION ALGORITHM 
The periodic error compensation, which can be 
processed in real-time, is depicted in Figure 2. 
 

 
 

FIGURE 2. Calculations to implement the 
periodic error compensation algorithm. 
 
Each time a new data point is obtained, an N-
size array is populated with the last N data 
points. With this series of data, the CWT is 
computed at the last data point (i.e., location n in 
Equation 5 is fixed at the end of the array). 
Therefore, an array of coefficients at the end 
point along scales is obtained and the ridge can 
be determined at scale s1. This scale 
corresponds to the 1st order periodic error 
frequency. Because the scale is inversely 
related to the frequency, the scale 1 /is s i=  
corresponds to the ith order periodic error 
frequency. 
 
For each new data point, the ridge and phase is 
calculated, so the periodic error phase 



information is determined. Arrays for the 
reference jth order periodic error are constructed, 
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We consider a general form of m order periodic 
errors, 
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where Aj is jth order periodic error amplitude.  
Apply CWT linearity property to obtain 
equations: 
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where ci is the CWT result for the data array at 
scale si, and dij is the CWT result for reference jth 
order periodic error at scale si. 
 
The amplitudes can be solved and then the 
periodic error is reconstructed as 

( )( )
1

sin
m

i
i

A i Nϕ
=
∑ . Finally, this result is 

subtracted from the original data to determine 
the compensated displacement data point. 
 
SIMULATIONS 
Simulations were used to assess the validity of 
the CWT-based algorithm. 
 
The algorithm was applied to a simulated 
constant velocity motion (50 mm/min) with 1st, 
2nd, and 3rd order periodic error amplitudes of 
4 nm, 2.5 nm, and 1 nm, respectively. The 
measured amplitudes are shown in Figure 3. 
The relative errors are 3.1%, 3.8%, and 8.9%, 
respectively. The compensated result is 
displayed in Figure 4. The root-mean-square 
(RMS) error is decreased by approximately 
86.4%. 
 
The algorithm was also verified using a 
simulated accelerating motion (30 mm/min2 
acceleration, 4 nm, 2.5 nm, and 1 nm 
amplitudes for 1st, 2nd, and 3rd order periodic 
errors, respectively). The measured amplitudes 
are shown in Figure 5. The relative errors are 
8.6%, 4.8%, and 10.8%, respectively. The 
compensated result is provided in Figure 6. The 
RMS error is reduced by approximately 80.1%. 

 
FIGURE 3. The measured amplitudes of 1st, 2nd, 
and 3rd order periodic errors in the constant 
velocity motion. 
 

 
FIGURE 4. The result of periodic error 
compensation in the constant velocity motion. 
 

  
FIGURE 5. The measured amplitudes of 1st, 2nd, 
and 3rd order periodic errors in the non-constant 
velocity motion. 
 



 
FIGURE 6. The result of periodic error 
compensation in the non-constant velocity 
motion. 
 
 
CONCLUSIONS 
A CWT-based algorithm is improved and used in 
this research to compensate higher order 
periodic error in heterodyne interferometer 
displacement signals for constant and non-
constant velocity motions. Future work will focus 
on implementing this algorithm on the hardware 
and compensating the experiment-collected data 
in real-time. 
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