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ABSTRACT 
This paper describes an analytical solution for turning and milling stability that includes process damping effects. 
Comparisons between the new analytical solution, time-domain simulation, and experiment are provided. The velocity-
dependent process damping model applied in the analysis relies on a single coefficient similar to the specific cutting force 
approach to modeling cutting force. The process damping coefficient is identified experimentally using a flexure-based 
machining setup for a selected tool-workpiece pair (carbide insert-AISI 1018 steel). The effects of tool wear and cutting edge 
relief angle are also evaluated. It is shown that a smaller relief angle or higher wear results in increased process damping and 
improved stability at low spindle speeds. 
 
 
INTRODUCTION 
 

The analytical stability lobe diagram offers an 
effective predictive capability for selecting stable chip 
width-spindle speed combinations in machining 
operations [1-4]. However, the increase in allowable chip 
width provided at spindle speeds near integer fractions of 
the system’s dominant natural frequency is diminished 
substantially at low spindle speeds where the stability 
lobes are closely spaced. Fortunately, the process 
damping effect can serve to increase the chatter-free chip 
widths at these low speeds. This increased stability at low 
spindle speeds is particularly important for hard-to-
machine materials that cannot take advantage of the 
higher speed stability zones due to prohibitive tool wear 
at high cutting speeds. 

Many researchers have investigated process damping 
in turning and milling operations. Early studies were 
carried out by Wallace and Andrew [5], Sisson and Kegg 
[6], Peters et al. [7], and Tlusty [8]. More recent efforts 
include: 
 

 a plowing force model based on the interference 
between the tool and workpiece [9] 

 the application of this plowing force model to 
milling operations [10-13] 

 a mechanistic description of the contributions of 
shearing and plowing forces to process damping 
[14] 

 a first-order Fourier transform representation of 
the interference between the tool and workpiece 
[15-16] 

 numerical simulation of the nonlinear process 
damping stability model [17-18] 

 an experimental investigation of the nonlinear 
process damping stability model [19] 

 experimental identification of the process 
damping model [20-21]. 

 
These studies described process damping as energy 

dissipation due to interference between the cutting tool 
clearance face and machined surface during relative 
vibrations between the tool and workpiece. It was shown 
that, given fixed system dynamics, the influence of 
process damping increases at low spindle speeds because 
the number of undulations on the machined surface 
between revolutions/teeth increases, which also increases 
the slope of the wavy surface. This, in turn, leads to 
increased interference and additional energy dissipation. 

In this paper, an iterative, analytical stability analysis 
is described that incorporates the effects of process 
damping. The analytical stability limit is validated using 
time-domain simulation and experiments. The paper is 
organized as follows. In the first section, process damping 
is described and the process damping force model is 
defined. Next, the stability algorithm is detailed. Results 
are then provided followed by the conclusions. 

 
PROCESS DAMPING DESCRIPTION 

 
In descriptions of regenerative chatter in machining, 

the variable component of the instantaneous cutting force 
may be written as: 
 

( )0F K b Y Ys= − ,   (1) 
 
where Ks is the specific cutting force (which depends on 
the tool-workpiece combination and, to a lesser extent, the 
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cutting parameters), b is the chip width, Y0 is the vibration 
amplitude in the surface normal direction, y, from the 
previous cutting pass, and Y is the current vibration 
amplitude. See Fig. 1. The underlying assumption in Eq. 1 
is that there is no phase shift between the variable force 
and chip thickness; this is indicated by the real values of 
Ks and b. However, for low cutting speeds, V, it has been 
shown that a phase shift can occur. This behavior is 
captured by the phenomenon referred to as process 
damping. Practically speaking, the effect of process 
damping is to enable significantly higher chip widths at 
low cutting speeds than linear stability analyses predict. 

 
 

 
 

Figure 1. The variable component of the cutting force, F, 
depends on the instantaneous chip thickness. The chip 
width is measured into the page; the mean chip thickness, 
hm, is also identified. 
 
 

To describe the physical mechanism for process 
damping, consider a tool moving on a sine wave while 
shearing away the chip [22]; see Fig. 2. Four locations are 
identified: 1) the clearance angle, γ, between the flank 
face of the tool and the work surface tangent is equal to 
the nominal relief angle for the tool; 2) γ is significantly 
decreased and can become negative (which leads to 
interference between the tool’s relief face and surface); 3) 
γ is again equal to the nominal relief angle; and 4) γ is 
significantly larger than the nominal value. 
 
 

 
 

Figure 2. Physical description of process damping. The 
clearance angle varies with the instantaneous surface 
tangent as the tool removes material on the sinusoidal 
surface. 

At points 1 and 3 in Fig. 2, the clearance angle is 
equal to the nominal value so there is no effect due to 
cutting on the sinusoidal path. However, at point 2 the 
clearance angle is small (or negative) and the thrust force 
in the surface normal direction is increased. At point 4, on 
the other hand, the clearance angle is larger than the 
nominal and the thrust force is decreased. Because the 
change in force caused by the sinusoidal path is 90 deg 
out of phase with the displacement and has the opposite 
sign from velocity it is considered to be a viscous 
damping force (i.e., a force that is proportional to 
velocity).Given the preceding description, the process 
damping force, Fd, in the y direction can be expressed as a 
function of velocity, chip width, cutting speed, and a 
constant C [21]. See Eq. 2. 
 

bF C yd V
=−     (2) 

 
As a final note regarding the sinusoidal path 

description in Fig. 2, the damping effect is larger for 
shorter vibration wavelengths, λ, because the slope of the 
sinusoidal surface increases and, subsequently, the 
variation in clearance angle increases. The wavelength 
equation, provided in Eq. 3, shows that lower cutting 
speeds or higher vibrating frequencies, f, gives shorter 
wavelengths and, subsequently, increased process 
damping. 
 

V
f

λ=             (3) 

 
 

 
 
Figure 3. Single degree of freedom turning model. 

 
 

STABILITY ALGORITHM 
 
Single Degree of Freedom Turning 
 

To describe the stability algorithm, consider the single 
degree of freedom turning model displayed in Fig. 3. 
Tlusty [22] defines the limiting stable chip width, blim, for 
regenerative chatter using: 
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( )
1

lim 2 Re
b

K Gs or
−

= ,       (4) 

 
where Gor is the oriented frequency response function, 

( ) ( )cos cosG Gor uβ α α= − . In this expression, β is the 
force angle relative to the surface normal, α is the angle 
between the u direction and the surface normal, and Gu  is 
the frequency response function in the u direction. To 
relate the frequency-dependent blim vector to spindle 
speed, Ω, Eq. 5 is applied to define the relationship 
between Ω and the valid chatter frequencies, fc (i.e., those 
frequencies where the real part of Gor is negative): 
 

2
fc N ε

π
= +

Ω
,   (5) 

 
where 0,1,2,...N=  is the integer number of waves per 
revolution (i.e., the lobe number) and 

( )
( )

Re12 2 tan
Im

Gor
Gor

ε π
 −= −   
 

 (rad) is the phase between the 

current vibration and the previous pass. 
To incorporate the process damping force (which acts 

in the y direction), it is first projected into the u direction: 
 

( ) ( ) ( )cos cos cosb bF F C y C yu d V V
α α α = =− =− 

 
  .     (6) 

 
The final form of Eq. 6 emphasizes that the u 

projection of the process damping force is effectively a 
viscous damping term. Therefore, the force can be 
incorporated in the traditional regenerative chatter 
stability analysis by modifying the structural damping in 
Gu . As shown in Fig. 3, the single degree of freedom, 
lumped parameter dynamic model can be described using 
the mass, m, viscous damping coefficient, c, and spring 
stiffness, k. In the absence of process damping, the 
equation of motion in the u direction is: 
 

( )cosmu cu ku F β α+ + = −  .       (7) 
 

The corresponding frequency response function in the 
u direction is: 
 

( )
1

2cos
UGu F m ic kβ α ω ω

= =
− − + +

,                  (8) 

 
where ω is the excitation frequency (rad/s). When process 
damping is included, however, the equation of motion 
becomes: 
 

( ) ( )cos cosbmu cu ku F C y
V

β α α + + = − − 
 

   .          (9) 

Replacing y  in Eq. 9 with ( )cos uα   gives: 
 

( ) ( )2cos cosbmu cu ku F C u
V

β α α + + = − − 
 

   .        (10) 

 
Rewriting Eq. 10 to combine the velocity terms yields: 
 

( ) ( )2cos cosbmu c C u ku F
V

α β α + + + = − 
 

  ,  (11) 

 
where the new viscous damping coefficient is 

( )2cosbc c Cnew V
α= + . Replacing the original damping 

coefficient, c, (from the structure dynamics only) with 
cnew enables process damping to be incorporated in the 
analytical stability model. The new frequency response 
function is: 
 

( )
1

2cos
UGu F m ic knewβ α ω ω

= =
− − + +

.           (12) 

 
However, the new damping value is a function of both the 
spindle speed-dependent limiting chip width and the 
cutting speed. The cutting speed (m/s) depends on the 
spindle speed (rpm) and workpiece diameter (m) 

according to 
60

dV π
= Ω . Therefore, the b and Ω vectors 

must be known in order to implement the new damping 
value. This leads to the converging nature of the stability 
analysis that incorporates process damping. The following 
steps are completed for each lobe number, or N value (see 
Eq. 5): 

1. the analytical stability boundary is calculated 
with no process damping to identify initial b and 
Ω vectors 

2. these vectors are used to determine the 
corresponding cnew vector 

3. the stability analysis is repeated with the new 
damping value to determine updated b and Ω 
vectors 

4. the process is repeated until the stability 
boundary converges. 

 
To demonstrate the approach, consider the model in 

Fig. 3 with 0α= , 66.48 10k= ×  N/m, 0.561m=  kg, 145c=  
N-s/m, 62927 10Ks= ×  N/m2, 61.79β=  deg, and 0.035d=  
m. The stability boundary with no process damping ( 0C=
) is shown in Fig. 4 for 0N=  to 60. It is observed that the 
limiting chip width approaches the asymptotic stability 
limit of 0.37 mm for spindle speeds below 1000 rpm. 

Results of the converging procedure with process 
damping for the 20N=  stability boundary are provided in 
Fig. 5. Converging behavior is observed for the 10 
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iterations as the lobes move up and slightly to the right. 
Although a convergence criterion, such as a threshold 
percent difference between subsequent minimum values, 
could be implemented, a practical selection of 20 
iterations was applied for the diagrams in this study to 
ensure convergence. Figure 6 displays the new stability 
diagram for 0N=  to 60 with 56.11 10C= ×  N/m. 

 
 

 
 
Figure 4. Stability diagram for single degree of freedom 
model from Fig. 3 with 0α= , 66.48 10k= ×  N/m, 0.561m=  
kg, 145c=  N-s/m, 62927 10Ks= ×  N/m2, 61.79β=  deg, 

0.035d=  m, and 0C= . 
 
 

 
 
Figure 5. Convergence demonstration ( 20N= , 10 
iterations) for single degree of freedom model from Fig. 3 
with 0α= , 66.48 10k= ×  N/m, 0.561m=  kg, 145c=  N-s/m, 

62927 10Ks= ×  N/m2, 61.79β=  deg, 0.035d=  m, and 
56.11 10C= ×  N/m. 

 
 

 
 
Figure 6. Stability diagram for single degree of freedom 
model from Fig. 3 with 0α= , 66.48 10k= ×  N/m, 0.561m=  
kg, 145c=  N-s/m, 62927 10Ks= ×  N/m2, 61.79β=  deg, 

0.035d=  m, and 56.11 10C= ×  N/m. 
 
 

 
 
Figure 7. Two degree of freedom turning model. 
 
 
Two Degree of Freedom Turning 
 

The process damping model can be extended to 
consider vibration modes in two orthogonal directions as 
shown in Fig. 7. The analysis procedure is similar, but 
there are now two new damping values to be calculated: 

( )2cos,1 1 1
bc c Cnew V

α= +  for the u1 direction and  

( )2cos,2 2 2
bc c Cnew V

α= +  for the u2 direction. These two 

damping values are used to update the 1Gu  and 2Gu  
frequency response functions; see Eq. 12. The oriented 
frequency response function for this case is 

( ) ( ) ( ) ( )cos cos cos cos1 1 2 21 2G G Gor u uβ α α β α α= − + + . 
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Milling 
 

Tlusty modified the previously described turning 
analysis to accommodate the milling process [3]. A 
primary obstacle to defining an analytical solution for 
milling stability (aside from the inherent time delay) is the 
time dependence of the cutting force direction. Tlusty 
solved this problem by assuming an average angle of the 
tooth in the cut, φave, and, therefore, an average force 
direction. This produced an autonomous, or time 
invariant, system. He then made use of directional 
orientation factors, µx and µy, to first project this force 
into the x and y mode directions and, second, project these 
results onto the surface normal (in the direction of φave). 
The new blim and Ω expressions for milling are provided 
in Eqs. 13 and 14, where Nt is the number of teeth on the 
cutter and *Nt  is the average number of teeth in the cut; 
see Eq. 15, where φs and φe (deg) are the start and exit 
angles defined by the radial depth of cut. The ε equation 
remains the same as before. 
 

[ ]
1

lim *2 Re
b

K G Ns or t

−
=         (13) 

 

2
fc N
Nt

ε
π

= +
Ω

          (14) 

 
*

360
e sNt

Nt

ϕ ϕ−
=          (15) 

 
Up Milling. The process damping force model defined 

in Eq. 2 was again applied, but the surface normal 
direction now depends on φave. The geometry is shown in 
Fig. 8a, where n is the surface normal direction. The 
projection of the process damping force from the n 
direction onto the x direction is: 

( ) ( )cos 90 cos 90bF F C nave avex d V
φ φ = − = − − 

 
 .    (16) 

 
Note that the velocity term is now n . Substituting 

( )cos 90n xaveφ= −   in Eq. 16 gives: 
 

( )2cos 90bF C xx aveV
φ =− − 

 
 .       (17) 

 
The new damping in the converging stability calculation 
for the x direction frequency response function, Gx, is 
therefore: 
 

( )2cos 90,
bc c Cnew x x aveV

φ= + − .       (18) 

 
The new y direction damping is: 
 

( )2cos 180,
bc c Cnew y y aveV

φ= + − .       (19) 

 
The oriented frequency response function for this case is 
G G Gor x x y yµ µ= + , where ( )( ) ( )cos 90 cos 90ave avexµ β φ φ= − − −   

and ( ) ( )cos 180 cos 180ave aveyµ φ β φ= − − − . 

 

a)  b)  
 

Figure 8. a) Geometry for up milling using the average 
tooth angle stability analysis (a 25% radial immersion cut 
is shown for illustrative purposes). b) Model for down 
milling (a 50% radial immersion cut is shown). The 
vector n defines the average surface normal direction. 
 

Down Milling. The geometry for the down milling 
case is shown in Fig. 8b. Using the same approach as 
described in the up milling case, the x and y direction 
damping values are provided in Eqs. 20 and 21. 
 

( )2cos 90,
bc c Cnew x x aveV

φ= + −   (20) 

 

( )2cos 180,
bc c Cnew y y aveV

φ= + −   (21) 

 
The oriented frequency response function for this case is 
G G Gor x x y yµ µ= + , where ( ) ( )cos 90 cos 90ave avexµ β φ φ= + − − , 

and ( )( ) ( )cos 180 cos 180ave aveyµ β φ φ= − − − . 

 
 
COMPARISON WITH SIMULATION 
 

Both analytical analyses and time-domain simulations 
were completed to determine the process damping effects 
on turning and milling stability. The time-domain milling 
simulations were based on the ‘Regenerative Force, 
Dynamic Deflection Model’ described by Smith and 
Tlusty [23] where the damping force was included 
directly in the numerical integration of the system 
equations of motion; the simulation details are provided in 
[24]. The results are compared in the following sections. 
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Single Degree of Freedom Turning 
 
The model shown in Fig. 3 was considered. A 

comparison between the analytical stability lobes and 
time-domain simulation results are provided in Fig. 9. In 
this case 0α= , 66.48 10k= ×  N/m, 0.561m=  kg, and 145c=  
N-s/m, 62927 10Ks= ×  N/m2, 61.8β=  deg, and 56.11 10C= ×  
N/m. The workpiece diameter was 35 mm. In all 
instances, the time-domain results agree with the 
analytical stability limit. 

 
 

 
 
Figure 9. Single degree of freedom turning model with

0α= . The time domain simulation results are identified 
as: (circle) stable; (cross) unstable; and (square) 
marginally stable. 
 
 

 
 
Figure 10. Up milling results for 50% radial immersion. 
The time domain simulation results are identified as: 
(circle) stable and (cross) unstable. 
 

Up Milling 
 

The model parameters for the three-tooth cutter were: 
0sφ =  and 90eφ =  deg (50% radial immersion), the 

dynamics in both the x and y directions were described by 
69 10k= ×  N/m, 900fn=  Hz, and 0.03ζ = , and the force 

constants were 62000 10Ks= ×  N/m2, 70β=  deg, and 
42 10C= ×  N/m. The comparison between the analytical 

stability lobes and time-domain simulation is provided in 
Fig. 10. The results match well. 
 
 
EXPERIMENTAL IDENTIFICATION OF 
PROCESS DAMPING COEFFICIENT 
 

The process damping coefficient, C, for a selected 
tool-workpiece pair was identified through a series of 
cutting tests. A single-tooth indexable end mill was used 
to mill AISI 1018 steel workpieces secured to the top of 
single degree-of-freedom leaf-type flexure. The stability 
limit was identified over a grid of axial depths of cut and 
spindle speeds. Using the experimental stability boundary, 
the process damping coefficient was identified. The 
effects of insert relief angle and tool wear were examined. 
The flexure dynamics were also adjusted to determine the 
sensitivity of the process damping coefficient to changes 
in the system dynamics. 
 
Setup Description 
 

In order provide convenient control of the system 
dynamics, a single degree-of-freedom, parallelogram leaf-
type flexure was constructed to provide a flexible 
foundation for individual AISI 1018 steel workpieces; see 
Fig 11. Because the flexure compliance was much higher 
than the tool-holder-spindle-machine, the stability 
analysis was completed using only the flexure’s dynamic 
properties. A radial immersion of 50% and a feed per 
tooth of 0.05 mm/tooth was used for all conventional (up) 
milling tests. 

In order to observe the sensitivity of the process 
damping coefficient to changes in the system dynamics, 
mass was added to the flexure in order to reduce the 
natural frequency; the added mass decreased the natural 
frequency by approximately 32%.The modal parameters 
for both cases are provided in Table 1. The x and y 
directions correspond to the flexible and stiff directions of 
the flexure, respectively, where y is the feed direction. 
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Figure 11. Setup for milling stability tests. An 
accelerometer was used to measure the vibration signal 
during cutting. 
 
 
Table 1. Modal parameters for flexure with and without 
added mass. 

 Direction 
Viscous 
damping 

ratio 

Modal 
stiffness 
(MN/m) 

Natural 
frequency 

(Hz) 

No 
mass 

x 0.063 2.77 228 
y 0.037 174 1482 

Added 
mass 

x 0.018 4.37 156 
y 0.028 276 1137 

 
 

An accelerometer (PCB Piezotronics model 352B10) 
was used to measure the vibration during cutting. The 
frequency content of the accelerometer signal was used in 
combination with the machined surface finish to establish 
stable/unstable performance, i.e., cuts that exhibited 
significant frequency content at the flexure’s x direction 
natural frequency, rather than the tooth passing frequency, 
were considered to be unstable. 

In order to study the influence of relief angle under 
milling conditions, two single-tooth indexable square end 
mills of similar diameter were used: 1) 18.54 mm 
diameter with a 15 deg relief angle (Kennametal model 
KICR-0.73-SD3-033.3C); and 2) 19.05 mm diameter with 
an 11 deg relief angle (Cutting Tool Technologies model 
DRM-03). Both cutting tools had a 0 deg rake angle and 
the inserts had no edge preparation.  

The cutting force coefficients were identified under 
stable cutting conditions using a cutting force 
dynamometer (Kistler model 9257B). For the 18.54 mm 
diameter cutter, the specific cutting force, Ks, and cutting 
force direction, β, were determined to be 2359.1 N/mm2 
and 63.5 deg, respectively. For the 19.05 mm diameter 
cutter, the values were 2531.0 N/mm2 and 62.0 deg. A 
linear regression to the mean cutting force over a series of 

tests at various feed per tooth values was used to identify 
the cutting force model values [24]. 
 
Process Damping Coefficient Identification 
 

Conventional linear stability analysis (i.e., C = 0 N/m) 
was first used to validate the stability behavior at higher 
speeds for the flexure setup. As seen in Fig. 12, the 
predicted behavior was observed experimentally. 
Additionally, the critical limiting chip width, blim,cr, was 
identified to be approximately 1 mm for the 228 Hz setup; 
this result also agreed with the analytical prediction. A 
similar approach was used to validate the stability 
boundary for the 156 Hz setup. The critical stability limit 
was approximately 0.4 mm for this system; see Fig. 13. 

 
 

 
 
Figure 12. Stability lobe validation for the 228 Hz setup. 
 
 

 
 
Figure 13. Stability lobe validation for the 156 Hz setup. 
 
 

A grid of test points at low spindle speed was next 
selected to investigate the process damping behavior. 
Based on the stable/unstable cutting test results, a single 
variable residual sum of squares (RSS) estimation was 
applied to identify the process damping coefficient that 
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best represented the experimental stability boundary; see 
Fig. 14. The spindle-speed dependent experimental 
stability limit, bi, was selected to be the midpoint between 
the stable and unstable points at the selected spindle 
speed. The sum of squares of residuals is given by Eq. 20, 
where ( )f iΩ  is the analytical stability boundary and n is 
the number of test points. A range of process damping 
coefficients was selected and the RSS value was 
calculated for each corresponding stability limit. The C 
value that corresponded to the minimum RSS value was 
selected to identify the final stability boundary for all test 
conditions. 
 

( )( )2
1

n
RSS b fi i

i
= − Ω∑
=

  (20) 

 
 

 
 
Figure 14. Description of variables for RSS estimate of 
process damping coefficient. 
 
 

Using the minimum RSS method, stability testing was 
performed for the 18.54 mm diameter, 15 deg relief angle 
end mill. Because flank wear can affect the process 
damping behavior, the flank wear width (FWW) was 
limited to less than 100 µm for these tests. A process 
damping coefficient of C = 2.5×105 N/m was found to 
best fit the data for the 228 Hz system (50% radial 
immersion up milling). The corresponding stability 
boundary is provided in Fig. 15. The procedure was 
repeated for the 156 Hz setup and a process damping 
coefficient of C = 2.6 × 105 N/m was identified. These 
results are displayed in Fig. 16. 
 

 
 
Figure 15. Up milling stability boundary for 50% radial 
immersion, 15 deg relief angle, low wear milling tests 
using the 228 Hz flexure setup (C = 2.5×105 N/m). 
 
 

 
 
Figure 16. Up milling stability boundary for 50% radial 
immersion, 15 deg relief angle, low wear milling tests 
using the 156 Hz flexure setup (C = 2.6×105 N/m). 
 
 

Tests were then performed using the 19.05 mm 
diameter, 11 deg relief angle end mill. The same 
procedure was following and the FWW was again limited 
to be less than 100 µm for all cuts. The process damping 
coefficient for both the 228 Hz and 156 Hz setups was 
3.3×105 N/m. See Figs. 17 and 18. 

The low wear stability test results are summarized in 
Table 2. The process damping coefficient for the 228 Hz 
setup increased by 32% for the 11 deg relief angle tool 
relative to the 15 deg relief angle tool. A 27% increase 
was observed for the 156 Hz setup. 
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Figure 17. Up milling stability boundary for 50% radial 
immersion, 11 deg relief angle, low wear milling tests 
using the 228 Hz flexure setup (C = 3.3×105 N/m). 
 
 

 
 
Figure 18. Up milling stability boundary for 50% radial 
immersion, 11 deg relief angle, low wear milling tests 
using the 156 Hz flexure setup (C = 3.3×105 N/m). 
 
 
Table 2. Comparison of process damping coefficients for 
low wear tests. 
 

Relief 
angle (deg) 

C (N/m) for the   
228 Hz setup 

C (N/m) for the   
156 Hz setup 

15 2.5×105 2.6×105 

11 3.3×105 3.3×105 
 
 
Tool Wear Effects on Process Damping Coefficient 
 

In order to explore the effect of tool wear on the 
process damping performance, tests were completed using 
worn tools where the FWW was maintained at a level of 
200 µm. For the 15 deg relief angle tool, the specific 
cutting force and cutting force direction were 2441.0 
N/mm2 and 63.5 deg, respectively; this represents a 3.5% 
increase in the specific cutting force relative to the 
unworn tool tests. However, the process damping 
coefficient was found to increase from the unworn tool 

tests by 20% for the 228 Hz setup and 31% for the 156 Hz 
setup. Similarly, for the 11 deg cutter, the cutting force 
parameters experienced only a slight change (Ks = 2550.2 
N/mm2 and β = 62.0 deg). However, the process damping 
coefficient increased by 15.2% for both flexure setups. 
 
 
Table 3. Comparison of process damping coefficients for 
moderate wear tests. 
 

Relief 
angle (deg) 

C (N/m) for the   
228 Hz setup 

C (N/m) for the   
156 Hz setup 

15 3.0×105 3.4×105 

11 4.0 ×105 3.8×105 
 
 
Repeatability 

 
Repeat testing was performed using the 19.05 mm 

diameter, 11 deg relief angle cutting tool in order to 
observe the variability in the process damping coefficient. 
A series of three additional cutting tests were performed 
on the 228 Hz system with an unworn insert. The three 
process damping coefficients were: 3.3×105

 N/m, 3.3×105
 

N/m, and 2.9×105 N/m. Assuming a normal distribution, a 
two-sided 90% confidence level was computed for this 
small sample size. The confidence interval for the 
population mean was: C = (3.2 ± 0.15)×105 N/m. Figure 
19 illustrates the corresponding confidence region. 
 
 

 
 
Figure 19. Up milling stability confidence region for 50% 
radial immersion, 11 deg relief angle milling tests using 
the 228 Hz flexure setup with an unworn cutting edge       
(C = (3.2 ± 0.15) × 105 N/m). 
 
 
CONCLUSIONS 
 

An analytical solution for machining stability while 
considering process damping was provided, where the 
process damping model relied on a single coefficient, C. 

0   400 800 1200 1600 2000

0.5

1

1.5

2

2.5

3

3.5

Ω (rpm)

b lim
 (m

m
)

0   200 400 600 800 1000
0

0.5

1

1.5

2

Ω (rpm)

b lim
 (m

m
)

400 800 1200 1600

1

1.5

2

2.5

3

3.5

Ω (rpm)

b lim
 (m

m
)



Proceedings of NAMRI/SME, Vol. 40, 2012 

This is analogous to the specific cutting force, Ks, 
approach to modeling cutting force. Stability testing was 
completed using a single degree-of freedom flexure to 
identify the process damping coefficient for low-speed 
milling of AISI 1018 steel under various conditions. It 
was demonstrated that a reduction in the relief angle and 
an increase in flank wear of the cutting edge increased the 
process damping coefficient. 

Process damping is particularly important for hard-to-
machine materials, such as titanium, nickel super alloys, 
and hardened steels. In these instances, tool wear 
generally prohibits higher surface speeds and the use of 
the large stable zones available at high spindle speeds. 
This limits the spindle speed to low values, which 
decreases the material removal rate. However, by 
exploiting process damping, higher stable axial depths 
and material removal rates can be achieved. 
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