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INTRODUCTION 
Machining science has seen tremendous gains 
in process modeling. Predictive model capture 
the physical laws governing the process. 
However, the model predictions are uncertain 
due to the inherent uncertainties in the inputs, 
underlying assumptions in developing the 
model, which may include approximations, 
and/or lack of information.  The global 
marketplace has placed a premium on reducing 
production time and cost without sacrificing 
quality so model accuracy is critical. In this work, 
the limitation to machining productivity imposed 
by tool wear is addressed using Bayesian 
inference techniques. A new approach that 
establishes an estimate of the remaining useful 
life (RUL) for a selected tool based on flank 
wear width (FWW) measurements is described. 
Although FWW measurements may have limited 
scope in an industrial setting, the proposed 
method can be applied to any metric used to 
detect tool wear, such as spindle power or 
acoustic emissions during machining.  
 
Taylor first defined an empirical relationship 
between tool life and cutting speed using a 
power law [1]: 
 

nVT = C   (1) 
 

where V is the cutting speed in m/min, T is the 
tool life in minutes, and n and C are constants 
which depend on the tool-workpiece 
combination. The constant C is defined as the 
cutting speed required to obtain a tool life of 1 
minute. Tool life is typically defined as the time 
required to reach a predetermined FWW, 
although other wear features (such as crater 
depth) may also be applied depending on the 
nature of the tool wear. 
 
 

BAYESIAN INFERENCE 
Bayesian inference models form a normative 
and rational method for updating beliefs when 
new information is available.  A Bayesian model 
treats an uncertain variable as a random 
variable using a probability distribution. Let the 
prior distribution about an uncertain event, A, be 
P(A), the likelihood of obtaining an experimental 
result B given that event A occurred be P(B|A), 
and the probability of receiving experimental 
result B (without knowing A has occurred) be 
P(B). Bayes’ rule is used to determine the 
posterior belief about event A after observing the 
experiment results, P(A|B), as shown in Eq. 2. 
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The product of the prior and likelihood function is 
used to calculate the posterior distribution. For 
multiple measurements, the posterior distribution 
after the first measurement, or update, becomes 
the prior for the second, and so on. For this 
study, the Taylor tool life constants, n and C, are 
treated as uncertain, which leads to uncertainty 
in the predicted tool life. 
 
BAYESIAN INFERENCE USING THE 
RANDOM WALK METHOD 
Bayesian inference provides a rigorous 
mathematical framework for belief updating 
about an unknown variable when new 
information becomes available. In this study, the 
RUL of the tool was estimated using Bayesian 
inference and FWW measurements. The tool life 
was defined as the time required for the tool to 
reach a maximum FWW of 0.3 mm. Tests were 
performed using an uncoated carbide (inserted) 
tool to mill AISI 1018 steel. The FWW was 
assumed to increase linearly with time until the 
end of tool life. In the Taylor tool life model (Eq. 
1), there is uncertainty in the values of the 



exponent, n, and the constant, C. Subsequently, 
there is uncertainty in the tool life, T. The FWW 
growth curve can be predicted by generating N 
sample FWW growth curves, or sample paths, 
each potentially representing the true FWW 
growth curve with an equal prior probability of 
1/N. The sample paths generated in this way 
were used as the prior for Bayesian inference. 
The prior probability of the sample paths was 
updated by applying Bayes’ rule to experimental 
FWW measurements. For each sample path, 
Bayes’ rule can be written as the following 
product: 
 
𝑃(𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒 𝐹𝑊𝑊 𝑔𝑟𝑜𝑤𝑡ℎ 𝑐𝑢𝑟𝑣𝑒|𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡) 
∝ 𝑃(𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡|𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒 𝐹𝑊𝑊 𝑔𝑟𝑜𝑤𝑡ℎ 𝑐𝑢𝑟𝑣𝑒)
× 𝑃(𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒 𝐹𝑊𝑊 𝑔𝑟𝑜𝑤𝑡ℎ 𝑐𝑢𝑟𝑣𝑒) 
 
where 𝑃(𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒 𝐹𝑊𝑊 𝑔𝑟𝑜𝑤𝑡ℎ 𝑐𝑢𝑟𝑣𝑒) is the 
prior probability that a given path is the true 
FWW growth curve. As noted, the probability is 
assumed to be 1/N before any FWW 
measurement is completed since each path is 
considered equally likely to be the true FWW 
growth curve. Also, 
𝑃(𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡|𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒 𝐹𝑊𝑊 𝑔𝑟𝑜𝑤𝑡ℎ 𝑐𝑢𝑟𝑣𝑒) 
is referred to as the likelihood and 
(𝑝𝑎𝑡ℎ = 𝑡𝑟𝑢𝑒 𝐹𝑊𝑊 𝑔𝑟𝑜𝑤𝑡ℎ 𝑐𝑢𝑟𝑣𝑒|𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡) is 
the posterior probability of the sample FWW 
growth curve given the test result. The product is 
divided by the normalizing constant 
𝑃(𝑡𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡). The test result denotes a FWW 
measurement.  
 
Prior 
The first step in the Bayesian inference 
approach is to select a prior. The prior 
distribution of n and C for the uncoated insert 
was based on previous experimental results [2]. 
In a separate study conducted by the authors, 
the means of the constants n and C for the given 
tool-work piece combination were found to be 
0.33 and 600 m/min. Based on these values, the 
priors for n and C were selected to be uniform 
distributions with minimum values of 0.3 and 
400, respectively, and maximum values of 0.35 
and 700, respectively, independent of each 
other. This is expressed using: n = U (0.3, 0.35) 
and C = U (400,700), where U denotes a 
uniform distribution and the values in the 
parentheses identify the minimum and maximum 
values, respectively. The random sample FWW 
growth curves were generated as follows. First, 
random samples were drawn from the prior joint 
probability density function (pdf) of n and C and 
the Taylor tool life curve was calculated for each 

{n,C} pair; this exercise was repeated 1×104 
times. As noted, the FWW was assumed to 
increase linearly with time until the end of tool 
life. Second, the linear FWW growth curve was 
generated for all the tool life values calculated 
from the first step at the selected experimental 
spindle speed. These growth profiles were the 
prior random sample paths used for Bayesian 
inference. Figure 1 shows the prior histogram of 
tool life at 5000 rpm. Figure 2 shows the prior 
cumulative distribution function (cdf) of FWW as 
a function of machining time at 5000 rpm. Figure 
3 shows the prior probability of FWW being less 
than 0.3 mm (defined as the FWW limit) as a 
function of machining time. From Figure 3, the 
95% RUL of the tool was 2.7 minutes. This 
implies that there is a 5% probability that the 
FWW will exceed 0.3 mm at 2.7 minutes. 
 

 
FIGURE 1. Prior histogram of tool life at 5000 
rpm. 
 
 

 
FIGURE 2. Prior cdf of FWW as a function of 
machining time at 5000 rpm. 



 
FIGURE 3. Prior probability of FWW being less 
than 0.3 mm as a function of machining time. 
 
Likelihood 
The probability of the sample FWW growth 
curves was updated using FWW measurements 
and Bayes’ rule. The likelihood function 
incorporates the uncertainty in tool wear and the 
assumed linear FWW growth model. A non-
normalized Gaussian distribution was used as 
the likelihood in his study shown in Eq. 3: 
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where l is the likelihood value, fwwm is the 
measured FWW, fww is the FWW value for a 
sample curve at the experimental spindle speed, 
and k depends on the tool wear uncertainty. 
Because the likelihood function is expressed as 
a non-normalized normal distribution, k = 2σ2, 
where σ is the standard deviation of fww; it 
represents the uncertainty in tool wear and the 
linear FWW growth model. The likelihood 
function describes how likely is the given the 
FWW measurement result, at a particular 
machining time, given that the sample FWW 
growth curve is the correct curve. Figure 4 
shows the likelihood function for a measured 
FWW of 0.1 mm after 5 minutes. If the FWW 
growth curve value is near the measurement 
result, then the likelihood value is high. 
Otherwise, it is low. The likelihood function can 
be interpreted as assigning weights from 0 to 1 
to the sample curves; 0 implying not likely at all 
and 1 implying most likely. As shown in Figure 4, 
increased uncertainty (higher σ) widens the 
likelihood function so that comparatively higher 
weights are assigned to sample curves far from 
the experimental result. Subsequently, larger 

uncertainty yields a more conservative estimate 
of tool life. 

 
FIGURE 4. Likelihood values for various 
uncertainty levels for a measured FWW of 0.1 
mm after 5 minutes of machining. 
 
Bayesian updating 
According to the Bayes’ rule, the posterior 
probability is the product of the prior and the 
likelihood and normalized so that the sum is 
equal to unity. The prior probability for each path 
is 1×10-4 and the likelihood value is determined 
using Eq. 3; the value of σ was taken as 0.01 
mm. The updated probabilities of the sample 
paths, calculated as the product of the prior and 
likelihood and normalized such that the sum is 
equal to unity, were used to determine the 
posterior FWW cdf.  Figure 5 shows the updated 
cdf of FWW given a measurement of 0.1 mm 
FWW at 5 minutes. Figure 6 shows the posterior 
probability of FWW being less than 0.3 minutes. 
The 95% RUL was 7.4 minutes; note that the 
measurement was taken after 5 minutes.  
 

 
FIGURE 5. Posterior cdf of FWW as a function 
of machining time at 5000 rpm. 



 
FIGURE 6. Posterior and prior probability of 
FWW being less than 0.3 mm as a function of 
machining time. 
 
RUL PREDICTIONS 
Tests were performed using uncoated carbide 
insert and 1018 steel workpiece material. The 
FWW was measured at regular intervals using a 
portable digital microscope. Figure 7 shows the 
growth of FWW with machining time. The tool 
life was found to be 11.9 minutes. The 
measured FWW values were then used to 
update the prior probabilities of the sample 
FWW growth curves using the procedure 
described previously. The value of σ was 
assumed to be 0.01 mm. Note that the updated 
probabilities of sample paths were used to 
calculate the posterior cdf of FWW. From the 
updated probabilities of the sample FWW growth 
curves, the 95% RUL of the tool before the 
FWW reaches 0.3 mm was determined. Each 
FWW measurement updates the RUL estimates. 
Figure 8 shows the 95% RUL of the tool after 
each measurement and the true remaining life 
calculated from the observed tool life value (11.9 
minutes). The RUL estimates approach the true 
remaining life from the conservative side.  
 
CONCLUSIONS 
The application of Bayesian inference to RUL 
predictions of the tool was demonstrated using a 
random walk approach, where the prior 
probability of FWW was generated using sample 
FWW growth curves that represented the true 
FWW growth curve with some probability. This 
probability was updated using Bayesian 
inference. Although a linear FWW growth model 
was assumed in this study, a higher order model 
may also be assumed to describe the three 
stages of tool wear [3]. The method can be 
extended to include sensor data such as power 

or acoustic emission. In addition, uncertainty 
regarding the threshold value of the sensor, 
such as percent increase from the nominal, can 
also be incorporated. 
 

  
FIGURE 7. Experimental FWW growth with 
machining time. 
 

 
FIGURE 8. 95% RUL predictions. 
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