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INTRODUCTION 
Existing force-based methods for parametrizing 
friction models are limited by large uncertainties 
(approximately parts in 102 [1]). This paper provides 
experimental results for a new method that uses 
velocity measured during free vibration to quantify the 
energy dissipation in friction contacts. The final goal 
is a friction measurement method that provides 
reduced uncertainty, particularly for low friction and 
low velocity applications. 
 
FRICTION MEASURING MACHINE 
The friction measuring machine (FMM) was designed 
and constructed to provide relative (linear) motion 
between the pin and counterface in a friction contact 
using a parallelogram leaf-type flexure [2]. The FMM 
can therefore be represented by a single degree of 
freedom spring-mass-damper system. 
  

 
 
Figure 1. FMM photograph. 
 
As shown in Fig. 1, the FMM uses four leaf springs to 
provide horizontal oscillating motion of the 

counterface. The FMM structure is based on a linear 
flexure mechanism. One end of each leaf spring is 
clamped to a rigid base, while the other is clamped to 
the faceplate that is attached to the motion platform. 
An electromagnet is used to capture the motion 
platform and displace it from its equilibrium position to 
provide the desired initial displacement. The force 
being applied by the electromagnet mechanism is 
located at the midpoint of the length of the flexures. 
This ensures that the faceplate will move parallel to 
the base plate, which, in turn, minimizes the rotation 
of the motion platform during friction testing. 

A counterface is attached to the motion platform. 
The fixed pin is attached to the bottom of a vertical 
shaft which provides the dead weight normal force 
during friction tests. The shaft is held in place using 
two air bearings that are rigidly attached to the FMM 
base. 

The gravitational load provides a constant normal 
force for the friction tests. The friction contact is 
completed when the pin is lowered onto the 
interchangeable translating counterface. The 
electromagnet is then used to move the motion 
platform to the desired initial displacement. Once the 
electromagnet is released, the system oscillates 
freely until it comes to rest.  

The magnitude of the flexure’s parasitic motion at 
the motion platform was estimated using Eq. 1 [2]. 
 

        ∆𝑦𝑦 = −3∆𝑥𝑥2

5𝐿𝐿
                                (1) 

 
Calculations show that the velocity measured with the 
laser vibrometer is two orders of magnitude larger 
than the parasitic motion for the range of tested 
displacements. To validate the calculations, a pair of 
capacitance sensors were used to measure the 
parasitic displacement of the motion platform and the 
results confirmed the analytical solution given by Eq. 
1. Due to the small motion amplitude, the kinetic 
energy associated with the parasitic motion was 
neglected. 

Free vibration velocity with no friction contact was 
measured to determine the instrument’s dynamic 
characteristics, including the modal mass, m, 
stiffness, k, and viscous damping coefficient, c. A 
range of initial displacements was tested and a 



nonlinear least-squares fitting algorithm was applied 
to Eq. 2 to determine the modal parameters [3]. 
 

                𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 = 0     (2) 
 
CHARACTERIZATION OF SYSTEM DYNAMICS 
The maximum allowable deflection for the FMM was 
calculated using Eq. 3: 
 
                   𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜎𝜎𝑦𝑦𝐿𝐿

3𝐸𝐸𝐸𝐸
 ,           (3) 

 
where L and t are the length and thickness of the leaf 
springs, respectively, and σy and E are the yield 
strength and elastic modulus for the spring material, 
respectively. The resulting maximum allowable 
deflection is 132 mm. A factor of safety of six was 
used to ensure that there would be no plastic 
deformation of the leaf springs. As a result the 
maximum testing displacement was 22 mm. 

Free vibration, non-friction tests were performed 
with initial displacements ranging from {4 to 22} 
millimeters. For each test, the FMM was first moved 
to an initial displacement. The vibrometer was then 
initiated to begin collecting data. The motion platform 
was then released and allowed to oscillate freely for 
45 s. The electromagnet was retracted upon release 
of the platform. For the flexure’s natural frequency of 
2.2 Hz, approximately 100 cycles were completed 
during the measurement interval. 

Before the fitting algorithm was applied to the data 
set, the pre-slide velocity data was used to remove 
any initially velocity offset from zero and then a 
smoothing function was applied to the data. The first 
10 cycles of the data set were also removed to ensure 
there were no residual effects from the 
electromagnet’s release and charge dissipation. The 
fitting algorithm was then applied to the remaining 
data. 

Equation 2 was the governing equation of motion 
for the system. Euler Integration was used in the 
fitting function to determine the modal parameters. 
The fitting algorithm was the Matlab® nonlinear least 
squares fitting algorithm lsqnonlin, which implements 
a trust region reflective fitting approach. Figure 2 
displays a sample of the fitting results using this 
function and Fig. 3 shows a small section of Fig. 2 to 
better illustrate the fitting results. 
 

 
 
Figure 2. Velocity data fitting results. 
 

 
 
Figure 3. Section of velocity data fitting results. 
 

The modal parameters identified using the fitting 
routine for various initial displacements are displayed 
in Table 1 and the mean values and standard 
deviations are presented in Table 2. 
 
Table 1. Modal parameters from fitting results. 

 
 

Initial
Displacement 

(mm)

Peak
Velocity 
(mm/s)

Mass
(kg)

Stiffness
(N/m)

Viscous
Damping
(Ns/m)

4 50 10.394 1981 0.222
6 76 10.395 1981 0.235
8 103 10.393 1981 0.245

10 129 10.397 1982 0.256
14 181 10.392 1982 0.278
16 207 10.389 1983 0.288
18 233 10.389 1984 0.299
20 258 10.385 1984 0.313
22 283 10.382 1984 0.327



Table 2. Mean and standard deviation of modal 
parameters. 

 
 

The damping coefficient showed the highest 
variation. Upon further inspection it was discovered 
that there appears to be a direct relationship between 
the viscous damping coefficient and the initial 
displacement, and, therefore the peak velocity during 
the free vibration cycle. This relationship is presented 
in Fig. 4. The linear fit has an R2 value of 0.997. 
 

 
 
Figure 4. Linear fit of viscous damping coefficient 
versus peak velocity. 

 
The clamps used to hold the leaf springs in place 

are the most likely source for this scaled energy 
dissipation. Losses can arise at the rubbing contact 
or through clamp elastic motion during vibration. 
Future tests will be completed to determine if the 
clamps are indeed the source for the variable viscous 
damping term. This will be done by designing and 
building two flexures with the same material and size: 
one monolithic and one with clamps. 
 
FRICTION MODELS AND UNCERTAINTY 
A single parameter Coulomb friction model was 
applied to determine the friction coefficient for the 
contact pair: a polytetrafluouroethylene (PTFE) pin on 
a polished steel counterface. To ensure a uniform 
interface between the polymer pin and steel 
counterface, a fine grit strip of sand paper was placed 
on the counterface and the polymer sample was run 
across it until its surface was parallel to the material 
plate. A normal force, N, of 14 N was applied for these 
tests. 
 

Equation 2 was modified to include a friction force. 
The corresponding differential equation of motion is 
shown in Eq. 4, where the m, k, and c values were 
determined from free vibration tests with no friction 
contact. The friction force is Ff = µN, where µ is the 
friction coefficient and N is the normal force. 
 

𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 + 𝐹𝐹𝑓𝑓 = 0, 𝑥̇𝑥 > 0
𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 = 0, 𝑥̇𝑥 = 0

𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 − 𝐹𝐹𝑓𝑓 = 0, 𝑥̇𝑥 < 0
     (4) 

 
Due to the variations in the damping coefficient, 

two separate approaches were: 1) use the mean 
damping coefficient from the modal parameters; and 
2) use the linear fit for the damping coefficient versus 
velocity. 

For the former, a Monte Carlo simulation was 
completed to determine the propagation of 
uncertainties associated with each system parameter 
to the best fit on a single parameter friction model 
data set. This data set was artificially created to 
represent the perfect friction data set assuming a 
known Coulomb friction model. Each input variable 
was sampled 100,000 times from a normal 
distribution defined by the Table 2 standard 
deviations and its individual influence on the friction 
fitting equation of motion, Eq. 4, was determined. For 
the created data set the coefficient of friction, µd, was 
0.15. Table 3 shows the results and Fig. 5 displays 
the probability density function for the case where all 
system parameter variables were randomly sampled 
in each iteration of the simulation. As expected, the 
highest uncertainty is associated with the damping 
coefficient. However, the highest sensitivity is 
presented by the modal mass. 
 
Table 3. Monte Carlo simulation results. 

 
 

Modal Parameters m (kg) k (N/m) c (Ns/m)
Mean 10.391 1982 0.275
St. Deviation 0.0045 1.3 0.0341

Parameter Mean St. Dev. dµ/dm (dk, dc)

m 0.150015 6.39x10-5 1.31x10-2

k 0.150018 2.09x10-5 1.65x10-5

c 0.150001 2.36x10-4 6.93x10-3

ALL 0.150021 2.48x10-4

µd



 
 
Figure 5. Probability density function for µd with m, k, 
and c variation. 

 
In the second approach the linear relationship 

between viscous damping and velocity was applied. 
The fit is provided in Eq. 5. 
 

        𝑐𝑐 = 0.437𝑥̇𝑥 + 0.2005                         (5) 
 

Other potential damping models were tested as 
well, including Elliott and Tehrani’s model [4] which 
implements a general nonlinear damping term for the 
analysis of a single degree of freedom system, 
Zaitsev’s [5] model for nonlinear damping in doubly 
clamped beams, and a drag term to account for the  
flexure movement in air during oscillation. None 
provided a consistent result when applied to Eq. 2. 
Therefore, the simple viscous damping model was 
retained for friction fata fitting. 
 
FRICTION FITTING RESULTS 
The PTFE-polished steel contact pair was used to 
collect data sets at the same initial displacements as 
those that were used to establish the modal 
parameters. The repeatability of every initial 
displacement test was verified. Figure 6 shows five 
tests at the same initial displacement. It is observed 
that the measured velocity results are nearly identical. 

 
 
Figure 6. Vibrometer velocity data for five friction 
contact tests conducted at an initial displacement of 
20 mm. 

 
The friction fitting results for the mean and linear 

viscous damping approaches were similar. Table 4 
shows the friction fitting results for initial 
displacements, x0, ranging from {8 to 22} mm. Figure 
7 displays a sample of the fitting for an initial 
displacement of 20 mm. 
 
Table 4 Friction fitting results for various initial 
displacements,x0. 

 
 

x0 (mm) µd vmax (m/s) µd vmax (m/s)

8 0.217 0.086 0.217 0.086
9 0.225 0.100 0.224 0.100

10 0.228 0.114 0.228 0.114
11 0.232 0.128 0.231 0.128
12 0.236 0.141 0.235 0.141
13 0.244 0.155 0.239 0.155
14 0.247 0.168 0.247 0.168
15 0.248 0.182 0.248 0.182
16 0.252 0.196 0.252 0.196
17 0.254 0.209 0.254 0.209
18 0.261 0.223 0.261 0.223
19 0.265 0.237 0.265 0.237
20 0.264 0.251 0.264 0.251
21 0.265 0.265 0.265 0.265
22 0.267 0.280 0.267 0.280

Mean cLinear c



 
 
Figure 7. Friction fitting results using single parameter 
Coulomb friction model. 

 
As with the viscous damping coefficient, the 

coefficient of friction displays a dependence on 
velocity as well. This is the case for both approaches, 
as can be seen in Fig. 8. 
 

 
 
Figure 8. Friction coefficient versus velocity for both 
linear damping coefficient and mean damping 
coefficient approaches. 
 
In this case, the relationship between µd and velocity 
can best be modeled through a power model; see Eq. 
6. The Eq. 6 fit has an R2 value of 0.99 and is visually 
presented in Fig. 9. 
 
                    𝜇𝜇𝑑𝑑 = 0.311𝑥̇𝑥0.2116 + 0.03148                 (6) 
 
 

 
 
Figure 9. Power law fit for the µd versus velocity data. 

 
The power law fit indicates that, at close to zero 

velocity, the friction coefficient is close to zero as well. 
As the velocity increases, so does energy dissipation. 
This behavior resembles the non-reversible friction 
model discussed by Wojewoda and Stefanski [6], 
where it is proposed that the sliding resistance due to 
friction is larger when an object accelerates from zero 
velocity than when is decelerates toward zero 
velocity. In both instances, the friction coefficient 
takes the same constant value once a specific 
velocity is reached. 

The theory that the friction coefficient is larger or 
smaller depending on acceleration was tested in a 
separate simulation that considered the current 
acceleration at each time step of the Euler integration. 
This resulted in an improved fit to the data across the 
different initial displacement tests. The coefficient of 
friction was always found to be larger when the FMM 
was accelerating than when it was decelerating. 
Figure 10 displays these results and Eq. 7 displays 
the equation of motion. 
    
              𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝑑𝑑1𝑁𝑁 = 0   , 𝑥̈𝑥 > 0      (7) 
              𝑚𝑚𝑥̈𝑥 + 𝑐𝑐𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 + 𝜇𝜇𝑑𝑑2𝑁𝑁 = 0   , 𝑥̈𝑥 < 0 
 



 
 
Figure 10. Dependence of the friction coefficient on 
acceleration (1 accelerating, 2 decelerating). 

 
The final friction model for the data has yet to be 

determined. However, the ability to observe and 
measure the energy dissipation due to sliding friction 
velocity, rather than force, enables reduced 
uncertainty for this interrogation. 
 
CONCLUSION 
The goal of this research was to develop a new 
friction measuring method for low velocity, low friction 
applications. By using a laser vibrometer to measure 
velocity and using that data to determine energy 
dissipation due to friction, it is possible to achieve 
lower uncertainties when determining friction 
coefficients for sliding contact interfaces. The friction 
measuring machine (FMM) enables the relative 
contributions of structural and friction contact energy 
losses to be isolated and quantified. Once the system 
dynamics were established and the friction model 
was selected, it was possible to parameterize the 
sliding friction model. 
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