
MILLING BIFURCATION AT EXTENDED AXIAL DEPTHS OF CUT 
 

Andrew Honeycutt and Tony L. Schmitz 
Mechanical Engineering and Engineering Sciences 

University of North Carolina at Charlotte 
Charlotte, NC 

 
INTRODUCTION 
In science and engineering fields, new discoveries 
are typically followed by a burst of follow-on research 
activity and corresponding publications. These 
discoveries tend to serve as a catalyst to the research 
community and often result in new insights, improved 
understanding of fundamental phenomena, and 
enhanced modeling capabilities. For machining, one 
such period of rapid progress began in the mid-19th 
century [1-3]. During this time, self-excited vibrations 
were first described using time-delay differential 
equations. The notion of “regeneration of waviness” 
was promoted as the feedback mechanism (time-
delay term), where the previously cut surface 
combined with the instantaneous vibration state 
dictates the current chip thickness, force level, and 
corresponding vibration response. This work resulted 
in analytical algorithms that were used to produce the 
now well-known stability lobe diagram that separates 
the spindle speed-chip width domain into regions of 
stable and unstable behavior [4]; see Fig. 1. 

Figure 1. Example stability lobe diagram. 
 
In 1998, a similar step forward in the 

understanding of machining behavior was realized. 
Davies et al. used once-per-revolution sampling to 
characterize the synchronicity of cutting tool motions 
(measured using a pair of orthogonal capacitance 
probes) with the tool rotation in milling [5]. This 
approach was an experimental modification of the 
Poincaré maps used to study state space orbits in 
nonlinear dynamics. They observed the traditional 
quasi-periodic chatter associated with the secondary 
(subcritical) Hopf, or Neimark-Sacker, bifurcation that 
can occur for systems described by periodic time-

delay differential equations. This was an expected 
result and was observed as an elliptical cluster of 
once-per-revolution sampled points in the x-y 
measurement plane perpendicular to the endmill axis. 
This elliptical collection of points occurred because 
the chatter frequency was incommensurate with the 
tooth passing frequency and quasi-periodic behavior 
was obtained. However, they also recorded period-3 
tool motion (i.e., motion that repeated with a period of 
three cutter revolutions) during partial radial 
immersion milling. This period-3 motion manifested 
itself as three distinct clusters of once-per-revolution 
sampled points in the x-y plane. They noted that this 
behavior was “inconsistent with existing theory” [5]. 

Figure 2. Once-per-revolution sampling of cutting tool 
motions (a) Hopf instability; (b) period-3 instability. 
 
In this paper, bifurcation diagrams are used to study 
milling at extended axial depths of cut (beyond the 
stability limit). Initial results show that unexpected 
behavior occurs in the unstable region and that new 
milling strategies may be applied based on these 
results. 
 
 
BIFURCATION DIAGRAMS 
A bifurcation diagram enables the evolution of system 
behavior (e.g., tool motion) with a control variable of 
interest (such as axial depth of cut in milling) to be 
efficiently observed. The diagram uses the periodic 
sampling strategy to identify periodic (or aperiodic) 
responses over the selected range of the control 
variable. For milling, the tool motion in the feed, x, or 
y direction is sampled once per spindle revolution for 



a given axial depth of cut (and fixed spindle speed). 
This produces a sequence of points over multiple 
cutter revolutions (see Fig. 2 for example). This 
collection of points is then truncated to remove the 
transient portion of the motion (typically the first few 
milliseconds). 

For stable milling with motion that is periodic with 
the cutting force (i.e., only forced vibrations are 
present), these sampled points repeat each 
revolution because the cutting force and subsequent 
vibration response is periodic with the spindle 
rotation. The superposition of all these repeated 
points therefore gives a single point (or nearly so) on 
a bifurcation diagram of axial depth (horizontal axis) 
versus once-per-revolution sampled tool motion 
(vertical axis). 

For a higher axial depth at the same spindle 
speed, secondary Hopf instability may occur and then 
the motion is quasi-periodic with tool rotation because 
the chatter frequency is (generally) incommensurate 
with the tooth passing frequency. In this case, the 
once-per-revolution sampled points do not repeat and 
they form a distribution (as shown in Fig. 2a). When 
plotted on the bifurcation diagram, this distribution 
appears as a vertical “spread” of points. 

For period-2 instability, on the other hand, the 
motion repeats only once every other cycle (i.e., it is 
a sub-harmonic of the forcing frequency). In this case, 
the once-per-revolution sampled points alternate 
between two solutions. On the bifurcation diagram, 
the points appear in two distinct vertical locations 
(recall that the vertical axis is the sampled tool 
motion). For period-n instability, the sampled points 
appear at n vertical locations. The bifurcation diagram 
construction from results at multiple axial depths of 
cut for a selected spindle speed is depicted in Fig. 3. 

Figure 3. Description of stable/unstable behavior for 
a milling bifurcation diagram. 
 
 

TIME-DOMAIN SIMULATION 
Time-domain simulation entails the numerical 
solution of the governing equations of motion for 
milling in small time steps. It is well-suited to 
incorporating all the intricacies of milling dynamics, 
including the nonlinearity that occurs if the tooth 
leaves the cut due to large amplitude vibrations and 
complicated tool geometries (including runout, or 
different radii, of the cutter teeth, non-proportional 
teeth spacing, and variable helix). The simulation is 
based on the Regenerative Force, Dynamic 
Deflection Model described by Smith and Tlusty [6]. 
As opposed to stability lobe diagrams that provide a 
“global” picture of the stability behavior, time-domain 
simulation provides information regarding the “local” 
cutting force and vibration behavior (at the expense 
of computational efficiency) for the selected cutting 
conditions. The simulation proceeds as follows: 
 

1. the instantaneous chip thickness is 
determined using the vibration of the current 
and previous teeth at the selected tooth angle 

2. the cutting force is calculated 
3. the force is used to find the new 

displacements 
4. the tooth angle is incremented and the 

process is repeated. Modal parameters are 
used to describe the system dynamics in the 
x (feed) and y directions, where multiple 
degrees of freedom in each direction can be 
accommodated. 

 
The instantaneous chip thickness depends on the 

nominal, tooth angle-dependent chip thickness, the 
current vibration in the direction normal to the surface, 
and the vibration of previous teeth at the same angle. 
The chip thickness can be expressed using the 
circular tool path approximation as ℎ(𝑡𝑡) = 𝑓𝑓𝑡𝑡 sin φ +
𝑛𝑛(𝑡𝑡 − 𝜏𝜏) − 𝑛𝑛(𝑡𝑡), where ft is the commanded feed per 
tooth,  φ is the tooth angle, n is the normal direction, 
and τ is the tooth period. The tooth period is defined 
as  𝜏𝜏 = 60

Ω𝑁𝑁𝑡𝑡
 (sec), where Ω is the spindle speed in rpm 

and Nt is the number of teeth. The vibration in the 
direction of the surface normal for the current tooth 
depends on the x and y vibrations as well as the tooth 
angle according to 𝑛𝑛 = 𝑥𝑥 sin φ − 𝑦𝑦 cos φ. 

For the simulation, the strategy is to divide the 
angle of the cut into a discrete number of steps. At 
each small time step, dt, the cutter angle is 
incremented by the corresponding small angle, dφ. 
This approach enables convenient computation of the 
chip thickness for each simulation step because:        
1) the possible teeth orientations are predefined; and 
2) the surface created by the previous teeth at each 
angle may be stored. The cutter rotation φ = 360

𝑆𝑆𝑆𝑆
 (deg) 



depends on the selection of the number of steps per 
revolution, SR. The corresponding time step is 𝑑𝑑𝑑𝑑 =
60
𝑆𝑆𝑆𝑆⋅Ω

 (sec). A vector of angles is defined to represent 
the potential orientations of the teeth as the cutter is 
rotated through one revolution of the circular tool 
path, φ = [0, dφ, 2 dφ, 3 dφ, … , (SR – 1) dφ]. The 
locations of the teeth within the cut are then defined 
by referencing entries in this vector. 

In order to accommodate the helix angle for the 
tool’s cutting edges, the tool may be sectioned into a 
number of axial slices. Each slice is treated as an 
individual straight tooth endmill, where the thickness 
of each slice is a small fraction, db, of the axial depth 
of cut, b. Each slice incorporates a distance delay 
𝑟𝑟χ = 𝑑𝑑𝑑𝑑 tan 𝛾𝛾 relative to the prior slice (nearer the 
cutter free end), which becomes the angular delay 
between slices: χ = 𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡 𝛾𝛾

𝑟𝑟
= 2𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡 𝛾𝛾

𝑑𝑑
 (rad) for the 

rotating endmill, where d is the endmill diameter and 
γ is the helix angle. In order to ensure that the angles 
for each axial slice match the predefined tooth angles, 
the delay angle between slices is χ = 𝑑𝑑φ. This places 
a constraint on the db value. By substituting dφ for χ 
and rearranging, the required slice width is 𝑑𝑑𝑑𝑑 =
𝑑𝑑⋅𝑑𝑑φ
2 tan 𝛾𝛾

. Using the time-domain simulation approach, 
the forces and displacements may be calculated. 
These results are then once-per-revolution sampled 
to generate the bifurcation diagrams. 
 
 
RESULTS 
As noted, the semi-discretization method was applied 
to predict Hopf and period-2 bifurcation. These 
predictions were verified experimentally and were 
reported in [7]. The up milling tests were completed 
using an 8 mm diameter endmill (mounted in a shrink 
fit tool holder) with one cutting edge, a 45 deg helix 
angle, and a 96 mm overhang. The radial depth of cut 
was 0.4 mm to provide highly interrupted cutting 
conditions. The aluminum workpiece and tool 
combination yielded a force model with a specific 
cutting force of 644 MPa and 69.7 deg force angle.  
 The long, slender tool exhibited a single dominant 
bending mode. The modal parameters for the x (feed) 
and y directions are provided in Table 1. 
  
Table 1: Modal parameters obtained from impact 
testing. 
 

Direction Natural 
frequency 

(Hz) 

Damping 
ratio (-) 

Stiffness 
(N/m) 

x 721 0.009 4.1×105 
y 721 0.009 4.1×105 

 

 The stability diagram obtained from the semi-
discretization method is plotted in Fig. 4. Lines are 
added that depict the spindle speeds that were used 
for the extended milling bifurcation diagrams. The 
modifier “extended” is used to emphasize that axial 
depths well beyond the predicted stability limit were 
used. 
 

Figure 4. Stability lobe diagram with stable and 
unstable (Hopf and period-2) zones (from [7]). Test 
speeds for the bifurcation diagrams are identified: 
(dashed line) 29000 rpm; (dash-dot line) 30000 rpm. 
 
 In Fig. 4 it is observed that the 29000 rpm 
(dashed) line predicts stable behavior up to an axial 
depth of 0.3 mm. Period-2 instability then occurs up 
to an axial depth of 2 mm. Stable performance is 
again predicted until 2.5 mm. Hopf instability then 
occurs for higher depths of cut. 

The corresponding bifurcation diagram is 
presented in Fig. 5. The vertical axis represents the 
once-per-revolution sampled x-direction tool motions, 
while the horizontal axis is the axial depth of cut. The 
transition from stable to period-2 motion occurs at 
0.26 mm; the period-2 instability persists with 
increasing amplitude until an axial depth of 2.1 mm. 
Stable operation is again obtained at 2.1 mm and is 
maintained until 2.4 mm. Hopf instability then occurs. 
The second stable zone validates the closed islands 
of stability depicted in Figs. 3 and 5. Regions of 
period-7 (3.38 mm to 3.54 mm) and period-5 (4.48 
mm to 4.7 mm) instability are also observed. This 
behavior is not predicted by existing milling stability 



theory and, to the authors’ knowledge, has not been 
previously presented in the literature. 

Figure 5. Extended milling bifurcation diagram (29000 
rpm). 
 
 A bifurcation diagram was also produced for 
30000 rpm (dash-dot line in Fig. 4). In Fig. 6, a 
transition from stable to period-2 motion is seen at 
0.68 mm. The period-2 behavior persists to an axial 
depth of b = 1.26 mm where combination period-2 
and quasi-periodic motion occurs. This is exhibited by 
the two separate vertical spreads in points. At 1.88 
mm, the motion changes to quasi-periodic only and a 
single, vertical distribution of once-per-revolution 
sampled points is seen. 
 

 
Figure 6. Extended milling bifurcation diagram (30000 
rpm). 
 
 The significance of the extended range bifurcation 
diagram is seen at an axial depth of 4.76 mm. A 

dramatic amplitude reduction is observed at this 
depth, even though the cut remains unstable. This 
reduced amplitude at a high axial depth could provide 
acceptable cutting conditions, while offering a high 
material removal rate. Additionally, period-7 instability 
is predicted in the range from b = 5.48 mm to 5.66 
mm. As noted, milling stability theory does not predict 
this behavior. These results call for additional 
analysis and experiments to better understand the 
predicted behavior. 
 These results demonstrate that the extended 
milling bifurcation diagram is a powerful tool to enable 
a detailed view of unstable behavior and elicit an 
improved understanding of milling dynamics. It is 
expected that this new understanding will lead to new 
milling strategies that improve productivity. 
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