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INTRODUCTION 
In many industries, such as aerospace, high-speed 
milling of flexible components is a common 
manufacturing process. Productivity in milling thin, 
monolithic components is often limited by 
regenerative chatter [1-2]. The present study 
concentrates on the thin plate dynamics used to 
model the flexible components. An analytical model 
is developed for the minimum lateral stiffness of thin 
ribs with clamped-clamped-clamped-free (CCCF) 
boundary conditions. The dynamic characteristics 
of the plate were predicted using finite element 
analysis and its accuracy was experimentally 
validated. 
 
The dynamic characteristics of these structures are 
conventionally described using the complex-valued 
frequency response function, or FRF, which defines 
the vibration output to force input ratio in the 
frequency domain. It represents the steady-state 
solution to the system differential equation of 
motion [3, 4]. 
 

In this paper, the CCCF plate structure is modeled 
using finite element software Abaqus/Standard 
6.13. The most flexible mode and location in the 
plate structure are considered when predicting the 
corresponding stiffness and natural frequency. The 
analytical model is intended to assist in peripheral 
milling of flexible structures. The paper is organized 
as follows. Modeling and identification of the FRF 
and mode shapes for plates with cantilever (case 1) 
and CCCF (case 2) boundary conditions using the 
finite element method, or FEM, are first presented. 
Next, the experimental procedure is described. 
Finally, a comparison between predicted and 
experimental results is presented. 
 
 
FINITE ELEMENT MODELING 
Numerical analysis may be used rather than 
analytical techniques for complex structures. FEM 
is the most widely used numerical technique for 
structural analyses. In FEM the continuum or 

domain is divided into a series of finite number of 
regions, called finite elements, which neither 
overlap nor have a gap between each other. The 
behavior of each element is controlled by the 
number of key points on each element called 
nodes. The displacement or stresses at any point in 
an element be assigned to these nodes which 
enables a problem with an infinite number of 
degrees of freedom to be converted to one with a 
finite number using differential equations of motion 
for the nodes. The motion of a dynamic structure or 
system may be represented by a set of 
simultaneous differential (coupled) equations using 
FEM. These coupled equations of motion are 
solved by transforming them into a set of 
independent (uncoupled) equations by means of 
modal matrix. This procedure is called numerical 
modal analysis [5]. Modal analysis is a process for 
determining the system’s modal parameters, 
including natural frequency and mode shape. Finite 
element analysis offers an effective predictive 
capability for modelling the thin-walled structures. 
 
Analysis procedure 
In Abaqus/Standard, modal analysis is referred to 
as dynamic analysis in which the response of linear 
systems is calculated on the basis of the necessary 
modes and frequencies. The procedure for dynamic 
analysis is summarized as follows. 
 
Natural frequency extraction 
Eigenvalue extraction is used to calculate the 
natural frequencies and the corresponding mode 
shapes of a system using the Lanczos eigensolver. 
The eigenvalue problem for natural frequencies of 
an undamped finite element model is: 
 

(− 𝜔𝜔2𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐾𝐾𝑀𝑀𝑀𝑀) ∅𝑁𝑁  = 0,  (1) 
 
where 𝑀𝑀𝑀𝑀𝑀𝑀 is the symmetric and positive definite 
mass matrix; 𝐾𝐾𝑀𝑀𝑀𝑀 is the stiffness matrix; ∅𝑁𝑁 is the 
eigenvector; and 𝑀𝑀 and 𝑁𝑁 are the degrees of 
freedom [6]. 
 



 
 

A first step for natural frequency extraction in this 
study was to build a model with the desired 
geometric dimensions (Fig. 1) and then assign the 
material properties and boundary conditions (see 
Fig. 2). Next, for meshing the model, an eight-node, 
three dimensional elements with reduced 
integration (C3D8R) was used. Finer mesh was 
used for the thin-walled structure (rib) while a 
coarser mesh was used in the other areas (base). 
A total of 91908 and 126456 elements were 
generated for the cantilever and CCCF boundary 
condition models. 
 
The predicted mode shapes and corresponding 
natural frequencies for the cantilever and CCCF 
boundary conditions are shown in Figs. 3-7. 
 
Mode-based steady-state dynamic analysis 
After extracting the natural frequencies and mode 
shapes, the mode-based steady-state dynamic 
analysis was used to calculate the steady-state 
dynamic linearized response of each system, i.e., 
the FRF for harmonic excitation. As the name 
suggests, this step calculates the response based 
on the system’s eigenfrequencies and modes and, 
therefore, requires that a natural frequency 
extraction procedure be performed prior to the 
steady-state dynamic analysis. The mode-based 
steady-state dynamic step is defined by specifying 
the frequency ranges of interest with a linear 
frequency spacing and a bias parameter of 1. Also, 
the damping coefficient, i.e., the viscous damping 
ratio, is defined for a specified mode number and a 
concentrated nodal force is applied to the 
displacement degree of freedom at the location of 
most interest in the structure’s response. These 
loads vary sinusoidally with time over a user-
specified range of frequencies [6].  
 

 
FIGURE 1. A schematic of the monolithic structure 
with cantilever (left) and CCCF (right) boundary 
conditions. The inset shows a cross-section of the 
system and the material properties for 6061-T6 
aluminum. 
 

 
FIGURE 2. FEM encastre boundary conditions for 
cantilever (left) and clamped-clamped-clamped-
free (right) boundary conditions: the bottom face is 
constrained from all displacements and rotations. 
 

 
FIGURE 3. Predicted first mode shape with a 
natural frequency of 5605.2 Hz for cantilever 
boundary condition. 
 

 
FIGURE 4. Predicted second mode shape with a 
natural frequency of 6115 Hz for cantilever 
boundary condition. 
 

 
FIGURE 5. Predicted third mode shape with a 
natural frequency of 7668.5 Hz for cantilever 
boundary condition. 
 



 
 

 
FIGURE 6. Predicted first mode shape with a 
natural frequency of 5821.9 Hz for CCCF boundary 
condition. 
 

 
FIGURE 7. Predicted second mode shape with a 
natural frequency of 7598.1 Hz for CCCF boundary 
condition. 
 
 
EXPERIMENTAL SETUP 
The plate FRFs were measured using the 
commercial software package MetalMax. The input 
force was applied using a modal hammer (PCB 
084A17) with a steel tip (PCB 086E80 SN 33416) 
and the vibration response was measured with a 
laser vibrometer (Polytec OFV-534); see Figs. 8-9. 
The vibrometer controller was set for a 
measurement range of 50 mm/s/V and a 1.5 MHz 
upper frequency. 
  
In order to obtain FRFs that accurately reflect the 
predicted workpiece dynamics, it is important to 
very closely match the workpiece’s boundary 
conditions. Therefore, the workpiece was glued 
using cyanoacrylate adhesive to a heavy steel 
table. The laser vibrometer target spot was located 
at the top right corner of the plate under test with 
approximately a 295 mm stand-off distance and the 
structure was impacted with the hammer at multiple 
locations. Given the time delay between the laser 
vibrometer and hammer signals, a phase correction 
algorithm [4] was used to remove the 
corresponding phase error from the measured FRF.  
 
 
 
 

FEA AND EXPERIMENTAL RESULTS  
The predicted and measured mode shapes, 
stiffness along the free edge, and FRF for cases 1 
(cantilever) and 2 (CCCF) are shown in Figs. 10-17. 
 
 

 
FIGURE 8. Plate with cantilever boundary condition 
FRF measurement via impact hammer and laser 
vibrometer. 
 
 

 
FIGURE 9. Plate with CCCF boundary condition 
FRF measurement via impact hammer and laser 
vibrometer. The inset shows stiffeners which 
provide clamped boundary condition at each end.  
 
 

 
FIGURE 10. Measured first mode shape with a 
natural frequency of 5774.7 Hz for cantilever 
boundary condition. 
 



 
 

 
FIGURE 11. Measured second mode shape with a 
natural frequency of 6319.4 Hz for cantilever 
boundary condition. 
 

 
FIGURE 12. Measured third mode shape with a 
natural frequency of 7939.1 Hz for cantilever 
boundary condition. 
 

 
FIGURE 13. Measured first mode shape with a 
natural frequency of 6002 Hz for CCCF boundary 
condition. 
 

 
FIGURE 14. Measured second mode shape with a 
natural frequency of 7795.7 Hz for CCCF boundary 
condition. 
 

FIGURE 15. Comparison of the predicted and 
measured FRF for CCCF boundary condition. 
 

 
 
FIGURE 16. Comparison of the predicted and 
measured first mode stiffness at the free edge for 
the plate with cantilever boundary condition. 
 

 
FIGURE 17. Comparison of the predicted and 
measured first mode stiffness at the free edge for 
the plate with CCCF boundary condition. 
 

 
FIGURE 18. Detailed drawing for different test 
geometries. 
 
TABLE 1. Geometry parameters and material for 
different test geometries (all dimensions in mm). 
           Case 
Geometry      

3 4 5 

A 25 25 37.72 
B 14.0 13.7 24.76 
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c 36.91 47.86 53.75 
R 11.43 11.43 10 
L 150 150 150 
t 2.01 2.01 2.95 
h 30 40 30 

Material Al6061 Al6061 Ti6Al4V 
 
Further analyses were conducted on other plate 
geometries with CCCF boundary conditions. 
Natural frequencies are shown in Fig. 19 and Table 
1. 

 

 
FIGURE 19. Natural frequency values for (top) 
entire range (bottom) 2.5 mm thickness only. 

 

 

 
FIGURE 20: Minimum stifness values for (top) 
entire range (bottom) 2.5 mm thickness 
 
Finally, using the numerical FEA modeling 
capability, the minimum stiffness and its 
corresponding natural frequency (for first mode) 
was evaluated for changes in length ranging from 
150 to 1450 mm, thickness from 1.5 to 15.5 mm, 
and height from 12 to 152 mm. The result is shown 
in Fig. 20. All results are summarized in Table 2.

 
 
TABLE 2. Comparing the first mode predicted and measured modal parameters for different test 
geometries.

                                                    Test geometry                                                                                                           
Modal Parameters Case 1 Case 2 Case 3 Case 4 Case 5 

Measured natural frequency, 𝑓𝑓𝑛𝑛𝑚𝑚(Hz) 5757.9 5994.4 2238.5 1468.7 3123.5 
Predicted natural frequency, 𝑓𝑓𝑛𝑛𝑝𝑝 (Hz) 5605.7 5822.1 2173.4 1415.2 3100.3 
(𝑓𝑓𝑛𝑛𝑚𝑚 − 𝑓𝑓𝑛𝑛𝑝𝑝) 𝑓𝑓𝑛𝑛𝑚𝑚⁄  x 100 (%) 2.7 2.9 2.9 3.6 0.74 
Measured modal stiffness, km (N/m) (x 106) 7.2581 3.721 0.5311 0.302 2.6382 
Predicted modal stiffness, kp (N/m) (x 106) 6.7672 3.406 0.5514 0.2904 2.5451 
(𝑘𝑘𝑚𝑚 − 𝑘𝑘𝑝𝑝) 𝑘𝑘𝑚𝑚⁄  x 100 (%) 6.8 8. 5 -3.8 3.8 3.5 

 
CONCLUSIONS 
In this study, a comparison of predicted and 
measured natural frequencies, stiffness values, and 
mode shapes showed good agreement for thin-
walled structures with cantilever and clamped-
clamped-clamped-free boundary conditions. Using 
the numerical finite element modeling capability,  
 

 
 
the natural frequency and minimum stiffness for the 
first (most flexible) mode was evaluated over a 
range of lengths, thicknesses, and heights. These 
trends may then combined into a lookup table that 
can be used to identify the natural frequency and 
minimum rib stiffness for the selected geometry. 
Using the interpolated natural frequency and 



 
 

stiffness values, the workpiece dynamics can be 
defined and, using milling stability analysis 
methods, stable machining parameters may be 
identified. 
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