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INTRODUCTION 
The mean material removal rate (MRR) in milling is 
calculated from the product of radial depth of cut, a, 
axial depth of cut, b, feed per tooth, ft, and spindle 

speed, . Because higher MRR reduces machining 
time, increasing MRR also decreases production 
cost. It is therefore desirable to increase all four 

process parameters (a, b, ft, and ) within the limits 
of the machining system. Limitations to these 
increases include: chatter (or unstable machining 
performance), tool wear, torque/power limits for the 
selected spindle, and feed rate limits for the selected 
drive. While all four limits can be imposed individually 
(or in combination), the focus for this study is chatter. 
 It is well understood that chatter occurs due to the 
inherent combination of structural flexibility and the 
periodic cutting force that excites the structural 
dynamics. Two primary categories for unstable 
behavior are: 1) regenerative; and 2) mode coupling 
chatter. Only regenerative chatter, where the process 
feedback leads to gain-dependent behavior, is 
considered here. This feedback occurs because the 
instantaneous chip thickness depends on both the 
vibration state of the cutter at the current time and the 
surface left behind by previous tooth passages (which 
introduces a time delay, or memory, in the differential 
equations of motion). Because the cutting force is a 
function of this instantaneous chip thickness and the 
current vibration state depends on the instantaneous 
force, the feedback loop is closed. Traditionally, the 
system gain is described as the axial depth of cut for 
a selected radial depth. The spindle speed dictates 
the time delay so, together, the spindle-speed and 
axial depth offer the control parameters for milling [1]. 
 Traditionally, regenerative chatter is considered to 
be a self-excited vibration and can be described as a 
secondary Hopf bifurcation (a bifurcation is a 
dramatic change in the dynamic state due to small 
modifications in the process parameters). The 

relationship between  and the limiting b value is 
typically presented in a stability map, or stability lobe 
diagram. Figure 1 provides an example. 

In recent research, it has been demonstrated that 
different types of instability can occur in milling. Not 
only can secondary Hopf bifurcations be observed, it 
has also been shown that period-n (n = 2, 3, 4, …) 
bifurcations can exist, where the system response 

repeats every n tooth periods (rather than every tooth 
period for the forced vibration that characterize stable 
milling) [2-3]. Figure 2 displays an example. 
 

Figure 1. Example stability map for milling. 
 

Figure 2. Stability map with period-2 bifurcation zone. 
 

The purpose of this study is to experimentally and 
numerically (time domain simulation) explore the 
stability behavior for dynamic systems with both 
asymmetric and symmetric dynamics. Results are 
presented for a flexure-based experimental setup that 
produces significant asymmetry in the dynamic 
stiffness relative to the cutting direction. Period-n 
bifurcations are simulated and validated. Systems 
with symmetric dynamics that apply the same modal 
parameters as the flexible direction for the flexure-
based setup are then simulated. Both period-n and 
secondary Hopf bifurcations are identified and 
compared to the asymmetric system behavior. 
Conclusions are finally presented. 



ASYMMETRIC DYNAMICS 
Because flexure-based experiments, where the 
workpiece is mounted on a single degree-of-freedom 
(SDOF) flexure, provide convenient measurement of 
the milling process outputs, they are a common 
choice for model validation. This setup represents the 
case of strongly asymmetric system dynamics 
because the SDOF flexure is much more flexible in 
one Cartesian direction than the other two. 
Additionally, the tool point dynamics are typically 
selected so that the tool’s lowest dynamic stiffness is 
much higher than the flexure’s lowest dynamic 
stiffness. 

To demonstrate bifurcation behavior for a 
strongly asymmetric system, the milling response 
was predicted using time domain simulation and 
validated using the flexure-based experimental 
configuration shown in Figure 3. For this setup, the 
flexure’s time dependent displacement, velocity, and 
acceleration during cutting were measured by a 
capacitance probe, laser vibrometer, and low mass 
accelerometer, respectively, to assess milling 
behavior under various process parameters. The 
laser tachometer signal was used to synchronously 
sample the flexure motion data.  
 

 
Figure 3. SDOF parallelogram, leaf-type flexure 
experimental setup. 
 
The flexure and tool point dynamics are listed in Table 
2. These modal parameters were extracted from x 
(feed) and y direction impact tests completed on both 
the flexure and single-flute 19.05 mm diameter, 30 
deg helix endmill. The mechanistic cutting force 
coefficients for the 6061-T6 aluminum workpiece 
were ktc = 792 N/mm2, knc = 352 N/mm2, kte = 26 
N/mm, and kne = 28 N/mm. Time domain simulations 
were completed for up milling in the flexure’s low 
stiffness direction with a 2 mm radial depth and 0.1 
mm/tooth feed. The simulation outputs included the 

cutting force and flexure motion x and y components 
for a range of {spindle speed, axial depth} 
combinations. The flexure displacement and velocity 
signals were synchronously sampled at the tooth 
period (once-per-revolution for the single flute cutter). 
Figure 4 shows the flexure’s time dependent, feed 
direction displacement, x, and velocity, dx/dt, as well 
the periodic sampling result (circles). It is observed 
that the process behavior repeats each period for the 
stable {3400 rpm, 6 mm axial depth} cut after the 
initial transients have attenuated. 
 

 
Figure 4. Predictions for stable {3400 rpm, 6 mm axial 
depth} up milling using the Table 1 dynamics with a 2 
mm radial depth and 0.1 mm/tooth feed. (Top) time 
dependent displacement with periodic samples 
(circles); (bottom) time dependent velocity with 
periodic samples. (Inset) higher magnification view to 
observe individual periodic samples of the 
displacement (top) and velocity (bottom). 
 
Table 1. Modal parameters (natural frequency, 
dimensionless viscous damping ratio, and stiffness) 
for asymmetric flexible feed direction experimental 
setup. 
 



Flexure Tool point 

x (feed direction) x 
130.0 

Hz 
0.0147 2.1106 

N/m 

1055 
Hz 

0.045 4.2107 
N/m 

y y 
756 
Hz 

0.085 7.7107 
N/m 

1055 
Hz 

0.045 4.2107 
N/m 

 
To more effectively visualize the process behavior, 
the displacement is plotted versus the velocity in the 
Figure 5 Poincaré map. Here, the sampled points all 
align at a single location because the stable milling 
process exhibits forced vibration at the tooth period. 
For this figure, the transient portion (during the cut 
entry) was excluded to leave only the steady-state 
behavior. 
 

Figure 5. Predicted Poincaré map for stable {3400 
rpm, 6 mm axial depth} up milling using the Table 1 
dynamics with a 2 mm radial depth and 0.1 mm/tooth 
feed. 
 
Figures 6 and 7 show the results for {3310 rpm, 6 mm 
axial depth}. This behavior represents a period-2 
bifurcation because the motion repeats every other 
tooth period, rather than every tooth period. Here, two 
points are observed in the Poincaré map. Cutting 
tests were completed on the Figure 3 setup to validate 
the time domain predictions. The experimental results 
are presented in Figure 8, where the displacement 
was measured by the capacitance probe and the 
velocity by the laser vibrometer. The time dependent 
signals were sampled once per tooth period using the 
laser tachometer signal and the transients (from the 
cut entry) were excluded. Good agreement with 
Figure 7 is observed and the simulation performance 
is verified. 
 
 

 
Figure 6. Predictions for period-2 {3310 rpm, 6 mm 
axial depth} up milling using the Table 1 dynamics 
with a 2 mm radial depth and 0.1 mm/tooth feed.  
 

Figure 7. Predicted Poincaré map for period-2 {3310 
rpm, 6 mm axial depth} up milling using the Table 1 
dynamics with a 2 mm radial depth and 0.1 mm/tooth 
feed. 



Figure 8. Experimental Poincaré map for period-2 
{3310 rpm, 6 mm axial depth} up milling using the 
Table 1 dynamics with a 2 mm radial depth and 0.1 
mm/tooth feed. 
 

Figure 9. Predicted stability map for up milling using 
the Table 1 dynamics with a 2 mm radial depth and 
0.1 mm/tooth feed. The bifurcation period is identified 
by the numerals 2-8. 
 
To obtain a global stability map, time domain 
simulations were completed over a grid of spindle 

speeds, , from 2600 rpm to 3500 rpm (5 rpm 
increments) and axial depths, b, from 0.1 mm to 10 
mm (0.1 mm increments). Periodic sampling was 
applied to the x data to individually identify period-2 
through period-8 bifurcations. The results are 
presented in Figure 9, where the symbols are defined 
in Table 2. An elliptical, period-2 “island” is seen 
between 3200 rpm and 3400 rpm within the stable 
zone; the Figure 7 prediction and Figure 8 experiment 
were completed at a point inside this island. Period-2 
through period-8 bifurcation “bands” are also 

observed within the secondary Hopf bifurcation zone 
(i.e., traditional regenerative chatter). In Figure 9, the 
bifurcation period is identified using the numbers 2-8, 
which appear at decreasing spindle speeds (i.e., right 
to left from 2 to 8). Repeated bands at higher speeds 
are also present; these are indicated with 
parentheses (e.g., (7) appears between 3 and 4 at a 
higher spindle speed range than 7). 
 
Table 2: Symbols for period-n stability maps. 

Period Symbol Color 
2 Circle Red 

3 ^ Blue 

4 Square Cyan 

5 + Green 

6 Diamond Magenta 

7  Red 

8 * Blue 

Stable No symbol (White space) 

Secondary 
Hopf 

 Black 

 
Using Figure 9, various bifurcation behaviors can be 
identified and then studied individually. For example, 
a secondary Hopf bifurcation is observed at {2850 
rpm, 6 mm axial depth}. This quasi-periodic behavior 
is displayed in Figure 10 (time domain) and Figure 11 
(Poincaré map). In Figure 11, the characteristic 
elliptical distribution for the periodically sampled 
points is obtained due to the presence of the new 
incommensurate chatter frequency (i.e., self-excited 
vibration). 
 

Figure 10. Predictions for unstable {2850 rpm, 6 mm 
axial depth} up milling using the Table 1 dynamics 
with a 2 mm radial depth and 0.1 mm/tooth feed.  
 
 
 
 



Figure 11. Predicted Poincaré map for unstable {2850 
rpm, 6 mm axial depth} up milling using the Table 1 
dynamics with a 2 mm radial depth and 0.1 mm/tooth 
feed. 
 
SYMMETRIC DYNAMICS 
Because tools, holders, and spindles are rotationally 
symmetric by design, it is common to observe 
symmetric system dynamics in practice. Therefore, 
simulations were next completed using the validated 
time domain solution to see how the process behavior 
changed with a shift from asymmetric to symmetric 
dynamics. First, the Table 1 dynamics were modified 
to match the flexure’s stiff y direction modal 
parameters to the flexible x direction; see Table 3. 
The same cutting force model and cutting conditions 
as used for Figure 9 were applied. The symmetric 
dynamics stability map is provided in Figure 12 (5 rpm 
and 0.1 mm increments). It is seen that: 1) the period-
2 island has expanded into the original secondary 
Hopf zone; and 2) a “hump” has appeared in the 
stability boundary near {3100 rpm, 2 mm axial depth}. 
 
Table 3. Modal parameters (natural frequency, 
dimensionless viscous damping ratio, and stiffness) 
for strongly asymmetric flexible feed direction 
experimental setup. 

Flexure Tool point 

x (feed direction) x 
130.0 

Hz 
0.0147 2.1106 

N/m 

1055 
Hz 

0.045 4.2107 
N/m 

y y 
130.0 

Hz 
0.0147 2.1106 

N/m 

1055 
Hz 

0.045 4.2107 
N/m 

 
 
 
 
 

Figure 12. Predicted stability map for up milling using 
the Table 3 symmetric dynamics with a 2 mm radial 
depth and 0.1 mm/tooth feed. 
 
WEAKLY ASYMMETRIC DYNAMICS 
As a final study, a dynamic system with weak 
asymmetry was considered. This is seen in practice, 
for example, when the flexible tool response 
dominates the system dynamics, but the x direction is 
slightly stiffer than the y (or vice versa) due to 
asymmetry in the spindle-machine dynamics into 
which the endmill is inserted. For this study, the y 
direction stiffness and natural frequency were set to 
90% of the x (feed) direction values; see Table 4. The 
results are displayed in Figures 13 (symmetric) and 
14 (asymmetric). It is seen that the Figure 14 stable 
gap (white space) has shifted, the period-2 island 
appears within the stable zone, and the stability hump 
has grown to a local stability peak (near 2900 rpm) 
with a new period-2 zone immediately to its left. 
Clearly, the weak asymmetry has added significant 
complexity to the overall stability behavior. 
 
Table 4. Modal parameters for weakly asymmetric 
dynamics system (symmetric when no multiplier used 
for y direction). 

Flexure Tool point 

x (feed direction) x 
125.8 Hz 0.0136 1.75

106 
N/m 

1188 
Hz 

0.095 4.24
107 
N/m 

y y 
0.9(125.8) 

Hz 
0.0136 0.9 

(1.75

106) 
N/m 

1188 
Hz 

0.095 4.24
107 
N/m 

 
 
 
 



Figure 13. Predicted stability map for up milling using 
the symmetric Table 4 dynamics with a 2 mm radial 
depth and 0.35 mm/tooth feed. 
 

Figure 14. Predicted stability map for up milling using 
the asymmetric Table 4 dynamics with a 2 mm radial 
depth and 0.35 mm/tooth feed. 
 
CONCLUSIONS 
This paper described the application of time domain 
simulation to the prediction of milling behavior for 
asymmetric, symmetric, and weakly asymmetric 
system dynamics. These choices correspond to three 
common physical setups: a single degree-of-freedom 
flexure setup often used to perform validation 
experiments (asymmetric); long, flexible endmill 
dynamics (symmetric); and tool or workpiece-
dominated dynamics with slight asymmetry in the 
plane of the cut (weakly asymmetric). The time 
domain simulation outputs included displacement and 
velocity, which were synchronously sampled to 
identify the milling behavior. The two signals were 
sampled at the tooth period to produce Poincaré 

maps. Also, subharmonic periodic sampling was 
completed at integer multiples of the tooth period and 
then these results were combined with a numerical 
stability metric to automatically produce a stability 
map from a grid of time domain simulations. 
Experimental validation was provided for the flexure-
based setups. The following results were observed. 
 Asymmetric dynamics 
In a flexure-based setup (Table 1), the process 
behavior was predicted and verified for feed in the 
flexible direction of the asymmetric flexure. A period-
2 island was seen in the stable zone with period-3 and 
higher bands located within the traditional secondary 
Hopf bifurcation zone. 
 Symmetric dynamics 
The dynamics for the flexure-based setup was 
modified to match both directions to the original 
flexible direction. Time domain simulations were 
completed to produce a stability map. It was seen that 
the period-2 island expanded into the original 
secondary Hopf zone and a hump appeared in the 
stability boundary near the new period-2 location in 
both instances. The period-3 and higher bands 
persisted. 
 Weakly asymmetric dynamics 
In this case, the stiff direction was similar to the 
flexible direction, but not identical (the stiffness and 
natural frequency were set to 90% of the flexible 
direction values). It was seen in the stability map that 
the stable gap shifted in spindle speed, a period-2 
island appeared within the stable zone, and a new 
local stability peak with a corresponding period-2 
zone appeared. Generally speaking, the weak 
asymmetry added significant complexity to the 
stability map. 
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