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INTRODUCTION 
Accurate measurement of cutting forces is 
fundamental to the understanding and modeling of 
machining processes. Traditionally, cutting force 
measurements are performed using a multi-axis 
piezoelectric-based cutting force dynamometer. A 
workpiece is mounted on the dynamometer, which is 
mounted to the machine table and aligned with the 
feed direction [1].  However, the dynamic properties 
of the dynamometer must be considered when 
operating at or near the dynamometer’s natural 
frequencies. At the natural frequencies there is an 
artificial amplification of force signals which can lead 
to inaccurate force readings. The cutting force 
measurements can be corrected by filtering the 
measured forces using the dynamometer force-to-
input force transmissibility [2-4]. In doing so, there is 
a structural deconvolution of the unwanted 
dynamometer dynamics from the measured force 
signals.  
 This paper presents a novel method for cutting 
force measurement using displacement of a flexure-
based dynamometer. In this case, the structural 
deconvolution is carried out by applying a filter to 
measured vibration signals based on the flexure’s 
inverted frequency response function (FRF).  
 
STRUCTURAL DECONVOLUTION 
A simulation was programmed in MATLAB® to 
demonstrate the deconvolution of the structural 
dynamics for a single degree of freedom (SDOF) 
system. The first step in performing the deconvolution 
is to measure the structure’s FRF. This was 
completed by impact testing, where an instrumented 
hammer is used to excite the structure and a 
measurement transducer is used to record the 
resulting vibration [1]. Using the system’s FRF (see 
Fig. 1) the differential equation of motion in response 
to a harmonic forcing function takes the form: 
 

( )sinmx cx kx A tω+ + =    (1) 

where, m , c , and k are the modal mass, damping, 
and stiffness parameters obtained from the FRF, A  

is force magnitude, and ω  is the forcing frequency. 
The solution to the differential equation was obtained 
in this study by time-domain simulation; example 
results are displayed in Fig. 2. 
 

 
Figure 1: Real and imaginary parts of the FRF for the 
simulated SDOF system. The natural frequency, fn, of the 
system is 135 Hz. 

 
Figure 2: Time-domain response of a SDOF system 
(bottom) to the force profile (top). The displacement was 
calculated using Euler integration. 

 The inverted FRF is used to generate a filter which 
is applied to the frequency-domain displacement to 



determine the frequency-domain force; see Fig. 3. 
The force is then transformed back into the time-
domain. As a result, the force is based on 
displacement, rather than the traditional piezoelectric 
signal. 

 
Figure 3: Frequency-domain response of the inverse filter 
used to remove the influence of the SDOF system 
dynamics. A low-pass 4th order Butterworth filter is applied 
to remove the effects of high-frequency content. 

 
Figure 4: Time-domain comparison of simulated and 
calculated forces obtained by structural deconvolution. 

 Figure 4 demonstrates the technique for an ideal 
displacement signal. The results closely agree. To 
investigate the effects of noise, a 5% noise level was 
added to the force and displacement signals. The 
results are shown in Fig. 5. The structural 
deconvolution method is adversely affected by noise 
levels. Therefore, a high signal-to-noise ratio is 
necessary in order to obtain accurate results. 

 
Figure 5 : Time-domain response of a SDOF system. A 5% 
noise level was added to the force and displacement 
signals. 
 
EXCITATION FORCE MEASUREMENT 
A series of tests were performed in order to compare 
measured and calculated forces. The SDOF flexure 
dynamics are provided in Table 1.  
 
Table 1: SDOF Flexure dynamics. 
fn [Hz] Damping ratio k [N/m] 
134.0 0.029 1.66×106 

 
 A function generator (Tektronix AFG 3022B) was 
used to command a waveform input for a modal 
shaker (TV 51075-M), which then excited the SDOF 
flexure system through a stinger (the stinger supports 
axial tension and compression, but not bending or 
shear [5]). A piezoelectric load cell (PCB 086C04) 
was affixed to the flexure end of the stinger to 
measure the excitation force applied to the system. 
The flexure vibrations were measured using a 
capacitance probe (LION Precision C-18-13-2.0). The 
experimental setup is illustrated in Fig. 6. 

 
Figure 6: Flexure-based dynamometer experimental setup 
with a capacitance probe and modal shaker. Note that the 
excitation direction is in-line with the flexible direction of the 
flexure. 



 A series of waveforms were used to illustrate the 
ability to reproduce excitation forces via structural 
deconvolution. The commanded waveforms are 
described in Table 2.  
 
Table 2: Commanded waveforms produced by the function 
generator and shaker.  
Waveform Forcing frequency [Hz] 
Sine 5 
Ramp 5 
Square 20 
Gaussian 50 

  
While the sine and ramp waves contain only the 

fundamental forcing frequency, the square and 
Gaussian waves contain additional frequency content 
at integer multiples of the forcing frequency. The 
results of this experiment are shown in Figs. 7-10.  

 
Figure 7: Time domain signals for a commanded sine wave 
at 5Hz. The commanded sine wave (top), the measured 
force by the piezoelectric load cell (middle), and the 
measured displacement by the capacitance probe (bottom). 

 
Figure 8: Time-domain comparison of measured and 
calculated forces for a sine wave with a forcing frequency 
of 5 Hz.  

 
Figure 9: Time-domain signals for a commanded ramp 
wave at 5 Hz.  

 
Figure 10: Time-domain comparison of measured and 
calculated forces for a ramp wave with a forcing frequency 
of 5 Hz 

 Frequently, partial radial immersion cutting forces 
resemble trains of periodic impulses [5]. Therefore, 
square and Gaussian waves were used to simulate 
the forces that may be encountered during milling 
experiments; see Figs. 11 and 13. A 4th order low-
pass Butterworth filter was applied to the inverse 
flexure FRF with a cut-off frequency equal to the 10th 
harmonic (multiple) of the forcing frequency. 
 The forces were successfully reconstructed with 
minor discrepancies in the amplitude, as shown by 
Figs. 12 and 14. The differences in amplitude can be 
attributed to the low-pass filter which attenuates 
higher-order frequencies which may be present in the 
forcing function. 



 
Figure 11: Time-domain signals for a commanded square 
wave at 20 Hz and a 50% duty cycle. 

 
Figure 12: Time-domain comparison of measured and 
calculated forces for a square wave with a forcing frequency 
of 20 Hz.  

 
Figure 13: Time-domain signals for a commanded 
Gaussian wave at 50 Hz. 

 
Figure 14: Time-domain comparison of measured and 
calculated forces through structural deconvolution. There is 
good agreement between the measured and calculated 
forces.  

The measured and calculated force frequency 
content for the Gaussian waveform is shown in Fig. 
15. It can be observed that the structural 
deconvolution replicates the fundamental frequency 
and its harmonics until the relative amplitudes are 
substantially dissipated. Further, the frequency-
domain is useful in observing any added effects from 
the piezoelectric load cell.  

 
Figure 15: Comparison of the frequency content for the 
measured and calculated forces. 

CUTTING FORCE MEASUREMNT  
The first set of cutting tests were carried out by 
mounting an aluminum workpiece on a multi-axis 
dynamometer (Kistler Type 9257B). The second set 
of cutting tests were performed by mounting the 
workpiece on the SDOF flexure, where the flexure 
displacement was measured using a capacitance 
probe (LION Precision C-18-13-2.0); see Fig. 16. It is 
important to note that the measurement transducer 



was aligned with the flexible direction of the SDOF 
flexure.  
 Stable down-milling machining conditions were 
selected for all trials at a spindle speed of 2550 rpm. 
The radial and axial depths of cut were both 2 mm. A 
set of three feed rates were chosen for this study: {25, 
75, and 125} μm/tooth.  
 

 
Figure 16: Flexure-based dynamometer experimental setup 
with a capacitance probe. Note that the feed direction is in-
line with the flexible direction of the flexure. 

RESULTS 
The magnitude and coherence of the FRF for the 
SDOF flexure-dynamometer is shown by Fig. 17. The 
FRF was generated by an impact test using a modally 
tuned hammer (PCB 086C04 SN29958) and its 
displacement response was measured using the 
capacitance probe. 

 
Figure 17: Magnitude and coherence measurements for the 
single degree of freedom flexure system used for the 
generation of cutting forces.  

 A comparison of the force signals is shown in Figs. 
18-20. The displacement signal of the SDOF flexure 
was used to calculate cutting forces. Further, a low-
pass filter was applied to the measured cutting forces 

to attenuate the high frequency content introduced by 
the dynamometer. These initial results show good 
agreement between the flexure-based dynamometer 
and the piezoelectric-based dynamometer. 
 

 
Figure 18: Measured, filtered, and calculated cutting forces 
for the 25 μm/tooth test. 

 
Figure 19: Measured, filtered, and calculated cutting forces 
for the 75 μm/tooth test. 



 
Figure 20: Measured, filtered, and calculated cutting forces 
for the 125 μm/tooth test. 

 The frequency content for the measured and 
calculated cutting forces is shown in Fig. 21. The 
additional frequency content introduced by the 
dynamometer structural response serves to artificially 
amplify the measured cutting forces at higher 
frequencies. 

 
Figure 21: Cutting force frequency content for the 
Kistler 9257B dynamometer and the SDOF flexure-
based dynamometer.  

CONCLUSIONS 
The purpose of this paper was to demonstrate the 
ability to measure cutting forces using the 
displacement of a flexure-based dynamometer. In this 
case, the structural deconvolution was carried out by 
applying a filter to a measured displacement signal 
based on the flexure’s inverted frequency response 
function. It was shown that, for a variety of excitation 
forces, the measured displacement can be used to 
reconstruct the force profile.  

 It was found that it is important to consider the 
signal-to-noise ratio for the displacement transducer 
because the displacement-to-force frequency domain 
analysis is sensitive to noise. A low-noise 
displacement sensor is therefore necessary to 
accurately reconstruct the excitation force.  
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