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INTRODUCTION 
Heterodyne displacement measuring 
interferometry provides important metrology for 
applications requiring high resolution and 
accuracy, such as in the semiconductor 
manufacturing industry and for linear stage 
calibration. Ideally, the measurement and 
reference beams in the interferometer 
completely separate and recombine, where the 
phase shift is linear with respect to 
displacement. In practice, however, periodic 
error exists due to undesirable frequency mixing. 
Periodic error is non-cumulative and appears as 
a function of the target displacement. Typically, 
both 1

st
 and 2

nd
 order periodic errors occur, 

which correspond to the number of periods (one 
or two) per fringe displaced, as shown in 
FIGURE 1. A displacement fringe corresponds 
to the wavelength divided by the interferometer 
fold factor which is determined by the 
interferometer setup. Ultimately, this error can 
limit the accuracy to approximately the 
nanometer level. 
 
Many studies have investigated the 
measurement and compensation of periodic 
error, including frequency domain and time 
domain approaches. For frequency domain 
approaches, the periodic error is measured by 
calculating the Fourier transform of the time 
domain data collected during constant velocity 
target displacement [1]. This method is not well 
suited to non-constant velocity profiles. An 
alternate digital algorithm which can be applied 
in real-time for constant or non-constant velocity 
motions is also available for measuring and 
compensating 1

st
 order periodic error [2]. 

 
In this work, an analytical wavelet-based 
technique is used to analyze periodic error for 
both constant and non-constant velocity motions 

and also situations where the periodic error 
amplitude may not be constant, such as 
interferometers with fiber delivery. 
 

 
FIGURE 1. Example of 1

st
 and 2

nd
 order periodic 

error as a function of fringes. Typically, 1
st
 order 

error has a larger magnitude than 2
nd

 order 
error.  
 
METHOD 

The wavelet transform can be used to analyze 
time series data that contains non-stationary 
(variable period) power at multiple frequencies 
[3]. Wavelet functions refer to either orthogonal 
or non-orthogonal wavelets. The choice of the 
appropriate wavelet transform (continuous or 
discrete) and wavelet function is based on 
whether the purpose of data analysis is 
detection or compression [4]. 
 
A wavelet function      is a finite energy 
function [5] with an  average of zero or 
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A wavelet family is generated by dilating the 

mother wavelet via the scale     and 
translating it via the location    . This series of 
wavelets can be expressed as: 
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In this research, the continuous wavelet 
transform (CWT) is used to analyze 
displacement signals. For a one-dimensional 
signal     , the CWT is 
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where * indicates the complex conjugate and   
represents the time variable. 
 
In practice, EQUATION 3 must be converted 
from continuous to discrete. For a time series, 
  , with time interval,   , where        , 
and a wavelet function,      , where   is a non-
dimensional ‘time’ parameter, the CWT of a 

discrete sequence,   , is defined as the 
convolution of this sequence with a scaled and 
translated version of      : 
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where   is the wavelet scale. To demonstrate 
how the wavelet coefficient amplitudes vary with 
scales and times, the discrete Fourier transform 
(DFT) can be applied [5].  The DFT of    is 
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where   is the number of points in the time 
series [6] and         is the frequency 

index. Also, the function        becomes  ̂     
in the frequency domain. The wavelet transform 
is the inverse Fourier transform of the product: 
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where    is the angular frequency. 
 
It is complicated to reconstruct the original time 
series for the CWT, due to the redundancy in 
time and scale. This redundancy, however, 
makes it possible to proceed with a completely 
different wavelet function such as the delta 
function [4]. By this approach, deconvolution is 
used to reconstruct the original time series. 
Comparison is made between the original and 
reconstructed signal. In this way, a connection 
between the wavelet function and the output 
signal is established. 

 
ANALYSIS 

Simulated and experimental displacement 
signals with periodic error were used to assess 
the validity of the wavelet-based technique. 
 
Periodic Error Reconstruction 
The specific wavelet function adopted in this 
analysis was the Morlet wavelet. The errors 
were isolated from the displacement signal by 
subtracting a least-squares best fit polynomial. 
In FIGURE 2, the simulation results show that 
the difference between the original and 
reconstructed periodic error is small, which 
demonstrates that the signal can be accurately 
constructed using wavelet analysis. FIGURE 3 
shows measurements with periodic (some low 
frequency drift remained after the least-squares 
best fit subtraction). The difference during the 
reconstruction process is still acceptable.  
 

FIGURE 2. The simulated original and 
reconstructed errors with the difference. 
 

FIGURE 3. The experimental original and 
reconstructed errors with the difference. 
 
Periodic Error Detection 

Here the Haar wavelet was used to detect the 
periodic errors in the displacement signal. The 
Haar wavelet is the simplest wavelet and it is not 
continuous. This property, however, can be an 
advantage to detect the sudden transitions and 
sharp rising and falling edges in signals, which is 
possible in periodic error detection. The signal in 
FIGURE 4 shows a simulated linear motion 



(            velocity) with 1
st
 and 2

nd
 order 

periodic errors. 
 

 
FIGURE 4. The simulated displacement signal 
with constant velocity and the periodic errors 
within it. 
 
FIGUREs 5 and 6 give the CWT result with the 
displacement signal when the peak amplitude of 
the periodic errors varies. 
 

 
FIGURE 5. The peak amplitudes of 1

st
 and 2

nd
 

order periodic errors are        and        
respectively. 
 

 
FIGURE 6. The peak amplitudes of 1

st
 and 2

nd
 

order periodic errors are        and        
respectively. 
 
The time intervals between every two closed 
peaks of the coefficients at the same scale can 
be used to determine the frequency of the 
periodic errors. Using the method, the frequency 

of the periodic error is calculated to be     , 
which matches the simulated frequency value. 

The velocity of a measured artifact is linearly 
proportional to the frequency of the periodic 
errors. Therefore, through wavelet analysis 
results the periodic error frequency information 
as well as the velocity of the original motion can 
be obtained. 
 
The CWT was applied to a simulated 

accelerated motion of              with 
periodic errors (FIGURE 7). The result is shown 
in FIGURE 8. Similar to method described 
previously, the periodic error frequency is 
observed to increase from approximately      

to      during increasing velocity motion. 
 

 
FIGURE 7. The simulated displacement signal 
with non-constant velocity and the periodic 
errors within it. 
 

 
FIGURE 8. The simulated displacement signal 
with non-constant velocity and the periodic 
errors within it. 
 
In addition, wavelet analysis was used with 
experimental data to detect the periodic errors 
for a heterodyne setup with a sampling rate of 

     . FIGURE 9 shows the displacement and 
errors. 
 



 
FIGURE 9. The experimental displacement 
signal with errors. 
 
FIGURE 10 shows the CWT coefficients for the 
signal depicted in FIGURE 9. FIGURE 11 
reveals specific coefficients at scale 10. 
 

 
FIGURE 10. The CWT result with the 
experimental signal. 
 

 
FIGURE 11. The CWT coefficients at scale 10. 
 
Similarly, measuring the average of the time 
intervals by every two closed peaks, the 
frequency of the periodic errors obtained here is 
approximately 26042Hz. 
 
CONCLUSIONS 

Wavelet analysis is used in this research to 
establish an accurate connection between the 
selected wavelet function and periodic error 
frequencies/amplitudes in heterodyne 
interferometer displacement signals. Future 
work will focus on applying the wavelet analysis 
in real time and developing an appropriate 

correction algorithm based on the wavelet 
coefficients to compensate for periodic errors for 
both constant and non-constant velocity motion. 
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